已知函数f(x)=ax^2+x/e-lnx(其中a为常数,e为自然对数的底数)
来源:学生作业帮 编辑:作业帮 分类:综合作业 时间:2024/11/08 16:44:46
已知函数f(x)=ax^2+x/e-lnx(其中a为常数,e为自然对数的底数)
(1)当a=1/2时,判断函数f(x)的单调性并写出其单调区间.
(2)当a>0时,求证f(x)=0没有实数解.
(1)当a=1/2时,判断函数f(x)的单调性并写出其单调区间.
(2)当a>0时,求证f(x)=0没有实数解.
(1)f(x)=ax²+x/e-lnx(x>0)
当a=1/2时
∴ f(x)=(1/2)x²+x/e-lnx
∴f'(x)=x-1/x+1/e
令f'(x)=0 且x>0
∴x=[-1+√(4e²+1)]/2e
∴f(x)在(0,[-1+√(4e²+1)]/2e)单调递减 在([-1+√(4e²+1)]/2e,+∞)单调递增
(2)f'(x)=2ax-1/x+1/e
当a>0时 通过和(1)相同的算法 可得函数最小值大于0
所以f(x)=0没有实数解
当a=1/2时
∴ f(x)=(1/2)x²+x/e-lnx
∴f'(x)=x-1/x+1/e
令f'(x)=0 且x>0
∴x=[-1+√(4e²+1)]/2e
∴f(x)在(0,[-1+√(4e²+1)]/2e)单调递减 在([-1+√(4e²+1)]/2e,+∞)单调递增
(2)f'(x)=2ax-1/x+1/e
当a>0时 通过和(1)相同的算法 可得函数最小值大于0
所以f(x)=0没有实数解
已知函数f(x)=ax^2+x/e-lnx(其中a为常数,e为自然对数的底数)
已知函数f(x)=ax^2+x/e-lnx(其中a为常数,e为自然对数的底数)
已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数
已知函数 f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
已知a属于R,函数f(x)=ax-lnx,x属于(0,e],(其中e是自然对数的底数,为常数)
已知函数f(x)=ax+lnx,其中a为常数e为自然对数的底数 求函数的单调区间
已知a属于R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
已知a∈R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)
已知函数f(x)=lnx+kex (k为常数,e=2.71828…是自然对数的底数),
已知函数f(x)=(x^2+ax-2a-3)e^-x,其中a>0,e为自然对数的底数.(1)求
已知a∈R,函数f(x)=a/x+lnx-1,g(x)=xlnx-2x(其中e为自然对数的底数).
已知常数a (a大于0),e为自然对数的底数,函数f(x)=e^x-x,g(x)=x^2-aInx.