阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2-6x+7的最大值.他画图研究后发现,x=
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 10:21:20
阅读下面的材料:
小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2-6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.
他的解答过程如下:
∵二次函数y=x2-6x+7的对称轴为直线x=3,
∴由对称性可知,x=1和x=5时的函数值相等.
∴若1≤m<5,则x=1时,y的最大值为2;
若m≥5,则x=m时,y的最大值为m2-6m+7.
请你参考小明的思路,解答下列问题:
(1)当-2≤x≤4时,二次函数y=2x2+4x+1的最大值为______;
(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;
(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为______.
小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2-6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.
他的解答过程如下:
∵二次函数y=x2-6x+7的对称轴为直线x=3,
∴由对称性可知,x=1和x=5时的函数值相等.
∴若1≤m<5,则x=1时,y的最大值为2;
若m≥5,则x=m时,y的最大值为m2-6m+7.
请你参考小明的思路,解答下列问题:
(1)当-2≤x≤4时,二次函数y=2x2+4x+1的最大值为______;
(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;
(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为______.
(1)∵抛物线的对称轴为直线x=-1,
∴当-2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;
(2)∵二次函数y=2x2+4x+1的对称轴为直线x=-1,
∴由对称性可知,当x=-4和x=2时函数值相等,
∴若p≤-4,则当x=p时,y的最大值为2p2+4p+1,
若-4<p≤2,则当x=2时,y的最大值为17;
(3)t<-2时,最大值为:2t2+4t+1=31,
整理得,t2+2t-15=0,
解得t1=3(舍去),t2=-5,
t≥-2时,最大值为:2(t+2)2+4(t+2)+1=31,
整理得,(t+2)2+2(t+2)-15=0,
解得t1=1,t2=-7(舍去),
所以,t的值为1或-5.
∴当-2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;
(2)∵二次函数y=2x2+4x+1的对称轴为直线x=-1,
∴由对称性可知,当x=-4和x=2时函数值相等,
∴若p≤-4,则当x=p时,y的最大值为2p2+4p+1,
若-4<p≤2,则当x=2时,y的最大值为17;
(3)t<-2时,最大值为:2t2+4t+1=31,
整理得,t2+2t-15=0,
解得t1=3(舍去),t2=-5,
t≥-2时,最大值为:2(t+2)2+4(t+2)+1=31,
整理得,(t+2)2+2(t+2)-15=0,
解得t1=1,t2=-7(舍去),
所以,t的值为1或-5.
阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2-6x+7的最大值.他画图研究后发现,x=
阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2-6x+7的最大值.
求关于x的二次函数y=x2-2tx+1在-1≤x≤1上的最大值(t为常数).
阅读下面学习材料:已知多项式2x3-x2+m有一个因式是2x+1,求m的值.解法一:设2x3-x2+m=(2x+1)(x
若二次函数y=-3x+1中x的取值范围是2≤x≤5,求这个函数的最大值
已知关于x的二次函数y=x2+2ax-1(a∉R),-3≤x≤1,求函数的最大值和最小值
已知关于x的二次函数y=x2+2ax-1(a∈R).,-3≤x≤1,求函数的最大值和最小值
阅读材料,解答问题.利用图象法解一元二次不等式:x2+2x-3<0.解:设y=x2+2x-3,则y是x的二次函数.∵a=
已知函数y=-2x2+4x+2在给定坐标系中画出函数的图象求函数当-3≤x≤-2时的最大值
求二次函数f(x)=x2+2ax-1,x∈[-1,1]的最大值.
当-1≤x≤4时,求二次函数y=x平方-2x-2的最大值,最小值?
已知:二次函数y=x2+2x+m-1. (1)若它的图象与x轴只有一个交点,求m的值; (2)若它的图象与直线x=x+2