(一)设f(x)为偶函数,g(x)为奇函数,又f(x)+g(x)=1/(x-1),(x不等于正负1).求f(x)与g(x
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 00:34:58
(一)设f(x)为偶函数,g(x)为奇函数,又f(x)+g(x)=1/(x-1),(x不等于正负1).求f(x)与g(x).
(二)对任意x属于R,函数f(x)表示-x+3,3x/2+1/2,(x的平方)-4x+3 中的较大者,求f(x)的最小值.
(三)设函数f(x)是定义在(-3,3)上的奇函数,且在定义域上单调递减,求不等式f(1-m) +f(1-m平方)>0的取值范围
(二)对任意x属于R,函数f(x)表示-x+3,3x/2+1/2,(x的平方)-4x+3 中的较大者,求f(x)的最小值.
(三)设函数f(x)是定义在(-3,3)上的奇函数,且在定义域上单调递减,求不等式f(1-m) +f(1-m平方)>0的取值范围
一、
用-x代x [利用f(x)为偶函数,g(x)为奇函数]
f(-x)+g(-x)=1/(-x-1)
由于奇偶性质,得
f(x)-g(x)=1/(-x-1),((用这个方程和原方程连立,解方程组)
f(x)+g(x)=1/(x-1)
得
f(x)=1/(x方-1)
g(x)=x/(x方-1)
二、
先比较三个函数的大小,利用作差法,用做得的差与0经行比较
可知(x的平方)-4x+3最大,即f(x)=(x的平方)-4x+3=(x-2)的平方-1,因为一个数的平方恒大于等于0,所以f(x)恒大于等于-1,即f(x)的最小值为-1
三、
首先由定义域可知
-3
用-x代x [利用f(x)为偶函数,g(x)为奇函数]
f(-x)+g(-x)=1/(-x-1)
由于奇偶性质,得
f(x)-g(x)=1/(-x-1),((用这个方程和原方程连立,解方程组)
f(x)+g(x)=1/(x-1)
得
f(x)=1/(x方-1)
g(x)=x/(x方-1)
二、
先比较三个函数的大小,利用作差法,用做得的差与0经行比较
可知(x的平方)-4x+3最大,即f(x)=(x的平方)-4x+3=(x-2)的平方-1,因为一个数的平方恒大于等于0,所以f(x)恒大于等于-1,即f(x)的最小值为-1
三、
首先由定义域可知
-3
(一)设f(x)为偶函数,g(x)为奇函数,又f(x)+g(x)=1/(x-1),(x不等于正负1).求f(x)与g(x
设f(x)为偶函数,g(x)为奇函数,且它们定义域都为x不等于正负1,f(x)+g(x)=1/x-1,求f(x),g(x
设函数f(x),g(x)为定义域相同的奇函数,试问 (1)函数F(x)=f(x)+g(x)是奇函数还是偶函数?为什么?(
已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=1/x+1,求f(x)和g(x).
若f(x)为偶函数,g(x)为奇函数,且f(x)+g(x)=1/x-1,求f(x)与g(x)的解析式
设函数f(x)与g(x)的定义域是R且x不等于正负1,f(x)是偶函数,g(x)是奇函数,且f(x)加g(x)=1/(x
一知奇函数f(x)偶函数g(x),f(x)+g(x)=a的x次方(a>0,a不等于1)求证f(2x)=2f(x)*g(x
已知f(x)=10^x,且f(x)=g(x)+h(x),其中g(x)为偶函数,h(x)为奇函数 (1)求g(x),h(x
已知f(x)为偶函数,g(x)为奇函数,且满足2f(x)+g(x)=1/(2x+1),求f(x)和g(x)
已知f(x)为偶函数,g(x)为奇函数且满足f(x)+g(x)=1/(x+1),求f(x),g(x)的解析式.
已知f(x)为偶函数,g(x)为奇函数且满足f(x)+g(x)=1/x-1,求f(x),g(x)
若f(x)是偶函数,g(x)是奇函数,且f(x)+g(X)=x的平方+1/(x+1),求f(X)