作业帮 > 数学 > 作业

已知三角形ABC为直角三角形,角BAC=90度,AD垂直于D,求证向量BC的模*2=向量DB+向量DA的模*2+向量DC

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 14:21:41
已知三角形ABC为直角三角形,角BAC=90度,AD垂直于D,求证向量BC的模*2=向量DB+向量DA的模*2+向量DC+向量DA的模*2

向量加减用到平行四边形法则,所以
过B点做平行四边形ADBF,由于AD垂直BC,所以四边形ADBF是矩形,则有BD//AF,AD//BF,且AD=BF
过C点做平行四边形ADCF,由于AD垂直BC,所以四边形ADCE是矩形则有CD//AE,AD//CE,且AD=CE
因为BC//AF,BC//AE,所以A、F、E三点共线,AD平行等于BF,同时AD平行等于CE,则BF平行等于CE,所以四边FBCE是平行四边形且是矩形,BC=EF
平行四边形ADBF,向量DA=向量BF
平行四边形ADCF,向量DA=向量CE
所以:向量DB+向量DA=向量DB+向量BF=向量DF
同理:向量DC+向量DA=向量DC+向量CE=向量DE
所以:|向量DB+向量DA|=|向量DF| =DF   (||表示向量的模)
           |向量DC+向量DA|=|向量DE|=DE
           |向量BC|=BC
ADBF是矩形,ADCE是矩形,FBCE是矩形,很容易证明∠FDE=90°,即:三角形FDE是直角三角形,有勾股定理知:EF^2=DF^2+DE^2
BC=EF
所以:BC^2=DF^2+DE^2
所以:|向量BC|^2=|向量DF|^2+|向量DE|^2
综上::|向量BC|^2=|向量DC+向量DA|^2+|向量DB+向量DA|^2