导数的定义,有式:f``(x)存在,h→0,有式:[f(x+h+h)-f(x+h)]/h 是否可以根据定义得 =f`(x
导数的定义,有式:f``(x)存在,h→0,有式:[f(x+h+h)-f(x+h)]/h 是否可以根据定义得 =f`(x
h趋于0时,(f(x0+2h)-f (x0+h))h是否等于f(x+h)的导数
若f(x)有二阶导数,证明f''(x)=lim(h→0)f(x+h)-2f(x)+f(x-h)/h^2.
正弦函数用定义求导就是用定义来求 F(x)=Sin(x)F'(x)=Lim h->0 ( (F(x+h)-F(x))/h
设f(x)在x=x.处有二阶导数,证〖f(x.+h)-2f(x.)+f(x.-h)〗/h^2在h→0时的极限等于f(x.
举例说明lim(h→0)f(xo+h)-f(xo-h)\2h=f'(xo)存在,推导不出函数f(x)在x=xo
f(x)在x=a处可导, lim(h→0) [f(a+h)-f(a-2h)]/h=
设f(X)在x=x0处具有二阶导数f''(x0),试证:lim(h→0)(f(x0+h)-2f(x0)+f(x0-h))
f(x)具有连续的二阶导数f,(x),证明f,(x)=[f(x+h)+f(x-h)-2f(x)]/h^2 (h趋于0)
设f(x)在x=x0的临近有连续的2阶导数,证明:lim(h趋近0)f(x0+h)+f(x0-h)-2f(x0)/h^2
设f(x)具有二阶导数f''(x),证明f''(x)=lim(f(x+h)-2f(x)+f(x-h))/h^2
设f(x)在x=x0的邻近有连续的二阶导数,证明;limh→0f(x0+h)+f(x0-h)-2f(x0)/h²