作业帮 > 数学 > 作业

已知a.b属于R+.且ab-a-b≥1,则a+b的取值范围

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:51:13
已知a.b属于R+.且ab-a-b≥1,则a+b的取值范围
我来试试看.罗嗦点,写点说明.
首先,在不等式ab-a-b≥1两边各加上1,变成ab-a-b+1≥2;
左边进行因式分解,得(a-1)(b-1)≥2;
麻烦点,设a-1=x,b-1=y;
则不等式变为xy≥2
若x,y均小于0,则a,b均为正小数,那ab-a-b≥1显然不成立,因为不等式左边小于1,因此,x,y均为正数
由不等式x+y≥2√xy≥2√2(是根号下,找个根号符号找不到...);
注意,此时等号取得的条件是x=y=√2
又有,a+b=x+y+2,
所以,a+b≥2√2+2
这就是我个人的解答,有可能是错的.因为1年没做过这类数学题了