在正方形abcd中 过P引PE垂直于BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:49:59
已知在正方形ABCD中,P是对角线AC上一点,PE⊥AB,PF⊥BC,连接EF PD,求证:EF=PD

由题意:四边形BFPE是矩形,所以其两对角线PB=EF∵正方形ABCD的两顶点B、D是关于其对角线AC成对称,所以PB=PD∴EF=PD

如图,在正方形ABCD中,P是对角线AC上一点,PB⊥PE,求证:PB=PE

证明:△BPC和△DPC中:BC=DCPC公共∠BCP=∠DCP=45°所以:△BPC≌△DPC(边角边)所以:∠PBC=∠PDE………………(1)PB=PD…………………………(2)四边形BPEC中

如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.

证明:(1)∵AC是对角线∴∠ACD=∠ACB=45°∵PC=PC,BC=DC∴△BCP≌△DCP(2)∵PE=PB∴∠PBC=∠PEC∵△BCP≌△DCP∴∠PBC=∠PDC∴∠PBC=∠PDC=∠

在正方形abcd中,o是对角线ac的中点,p是对角线ac上一动点,过点P作PE⊥PB

⑴  上图.⊿PSE≌⊿PTB﹙ASA﹚,∴PE=PB.. ⊿PBE等腰直角.∠EBF=45º,⊿BCE绕B逆时针旋转90°,到达⊿BAG. &nbs

已知:如图,在正方形ABCD中,点P在AC上,PE⊥AB,PF⊥BC,E、F是垂足.求证EF=PD

过P作PM⊥CD,PN⊥AD∵AC是正方形对角线∴PM=PF,PE=PN∵PM⊥CD,PN⊥AD∴PNDM为矩形∴PN=DM∴PE=PN=DM∵PM=PF,PE=PN=DM∠PMD=∠FPE=90°∴

如图,在正方形ABCD中,P为BD上一点,PE⊥DC于E,PF⊥BC于F,试说明AP=EF

连结CP在正方形ABCD中,BD是对角线∴AB=BC,∠ABP=∠CBP=45°,∠C=90°∵BP=BP∴⊿ABP≌⊿CBP(SAS)∴AP=CP∵PE⊥DC于E,PF⊥BC于F∴∠C=∠PFC=∠

在长方体ABCD-A1B1C1D1中,过平面A1B上任一点P作PE⊥AB于E,则直线PE与平面AC所成的角等于

平面A1B是不是就是平面ABB1A1?,如果是的那所成角为90°因为PE属于面ABB1A1且垂直于AB,且面ABB1A1垂直于面ABCD,所以PE垂直于面ABCD,所以PE垂直于AC

已知,如图1,在正方形ABCD中,P是对角线AC上点,E在BC延长线上,且PE=PB

(1)证明:设CD与PE相交于O因为四边形ABCD是正方形所以CD=CB角DCP=角BCP角BCD=90度因为CP=CP所以三角形DCP和三角形BCP全等(SAS)所以角PDC=角PBC因为PB=PE

已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC于

(1)如图,过p点作HI//AD,则HI⊥AB,HI⊥CD,由PB⊥PE得∠1+∠2=90°,又∠2+∠PBI=90°,则∠1=∠PBI,在边长为1的正方形ABCD中BI=1-AI=1-PI(因为AI

已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于PB,PE交射线DC

一、证明:∵∠BPE=∠BCE=Rt∠,∴四边形BPCE内接于圆,∴∠BEP=∠BCP=45°,∴∠EBP=45°,∴PB=PE;连结BD交AC于点O,∵∠OBP+∠OPB=Rt∠,∠FPE+∠OPB

已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE⊥P

答案如图手机提问的朋友在客户端右上角评价点【满意】即可再问:谢谢(^ω^)

已知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点p作PE垂直于P

B,PE交射线DC于点E,过点E作EF垂直于AC,垂足为点F一.(1)求证:PB等于PE(2),在点P的运动过程中,PF的长度是否发生改变?若不变,试求出这个不变的值,若变化,试说明理由.二.当点E落

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与

(1)过p做PM垂直bc,PN垂直DC,角PEC=角PBC(PBCE,四点共圆,或者转角也可以)又pn=pm所以三角形pmb全等三角形pne(2)AF+CE=EF三角形cbe逆时针旋转90°,证三角形

在正方形ABCD中,P是对角线BD上一点,PE⊥BC,PF⊥CD,垂足分别为E、F,求证AP⊥EF.

EF=AP.理由:∵PE⊥BC,PF⊥CD,四边形ABCD是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF是矩形,连接PC,∴PC=EF,∵P是正方形ABCD对角线上一点,∴AD=CD,

在正方形abcd中,点p是对角线ac上的一点,点e在BC的延长线上,且pe=pb.1.求证三角形

证明:(1)∵AC是对角线∴∠ACD=∠ACB=45°∵PC=PC,BC=DC∴△BCP≌△DCP(2)∵PE=PB∴∠PBC=∠PEC∵△BCP≌△DCP∴∠PBC=∠PDC∴∠PBC=∠PDC=∠

在正方形ABCD中,P是BD上一点,过P引PE垂直BC交BC于E,过P引PF垂直CD于F,求证:AP垂直EF

证明:延长FP交AB于点G,得正方形BEPG,连PC,所以∠AGP=∠GPE=90,PE=PG=BG,所以AB-BG=FG-PF即AG=FP在矩形PEFC中,对角线PC=EF,因为P是正方形ABCD的

在正方形ABCD中,M在对角线BD上,且BM=BC,在CM上任取一点P,作PE⊥BD于E,PF⊥BC于F,求证:PE+P

联接BD交AC于O,联接BP∵ABCD是正方形∴AC⊥BDCO=1/2BD∵PE⊥BMPF⊥BC∴S△BPM=1/2×BM×PES△BPC=1/2×BC×PFS△BCM=1/2×BM×CO∵S△BPM

正方形ABCD中,P是对角线AC上一点,过点P作PF⊥CD于点F.连接PB,过点P作PE⊥PB且PE交线段CD于点E.

连接BE、PD,过点P作AD的垂线,垂足为G,①因为点O为正方形ABCD对角线AC中点,∴点O为正方形中心,且AC平分∠DAB和∠DCB,∵PE⊥PB,BC⊥CE,∴B、C、E、P四点共圆,∴∠PEB

如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥A于F,直线PF分别交AB、C

,作辅助线GI垂直CD交CD于点I,四边形ADGI就是一个矩形了,AG=DI了噻.角AGF和角BGP是对角,所以相等——且角AGF+FAG=90度,角BGP+HGI=90度,所以FAG=HGI,三角形