在等腰直角三角形ABC中,∠ABC等于90°,E是AB上的一点,BE=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 08:37:51
∠A=90°,∠ABC的平分线BD与AC交与点D,DE⊥BC于点E.易证三角形BADBED全等AD=ED等腰直角三角形ABC,∠C=45直角三角形DECED=CEAD=ED=CE
△ABC是等腰三角形,AD⊥BC,AB=AC∴AD平分∠BAC∵DE⊥ABDF⊥AC∴DE=DF(角平分线上的点到角两边距离相等)在四边形AEDF中,∠EAF=∠AED=∠AFD=90°∴∠EDF=9
因为等腰直角三角形ABC,所以∠C=45°,所以DE=EC因为BD为∠ABC的平分线,且DE⊥BC,AB⊥AD,所以AD=DE(角平分线定理)所以AD=CE
两个垂直的BD=2MN;建立坐标,以B点为原点,BA为y轴,BC为x轴,假定BC=1,AD=X则可以写出坐标B(0,0),D(X,1),N是BD中点所以坐标N(X/2,1/2)M点(【1+X】/2,【
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
证明:作DE⊥BC于点E∵△ABC是等腰直角三角形∴AB=AC,∠C=45°∵AD平分∠ABC∴∠ABD=∠EBD∵∠A=∠BED=90°,BD=BD∴△ABD≌△EBD∴AB=BE,AD=DE∵DE
证明:延长AM到F,使MF=AM,连接BF,CF(如图)∵BM=CM,AM=FM,∴四边形ABFC为平行四边形.∴FB=AC=AE,∠BAC+∠ABF=180°又∵∠BAC+∠DAE=180°,∴∠D
设CA=CB=3,则A(3,0),B(0,3),E(2,1),F(1,2),C(0,0)CE|=|CF}=根号5,CE*CF=2+2=4,cos∠ECF=4/5,sin∠ECF=3/5,tan∠ECF
因为BA等于EACA等于FA角BAC等于角EAF所以直三角形BAC全等于直角三角形EAF因为AD垂直BC所以三角形ADC相似于三角形EAF所以角AEM等于角DAC又因为角EAM等于角DAC所以角MAE
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A
过C作AB垂线,垂足为M因为三角形ACB为等腰直角三角形所以AM=BM=CM=1/2AB因为DE⊥AB所以角DEP=角CMP角EDB=角B=45因为CP=PD所以角PCD=角PDC所以角CPB=45+
1.(1)延长平面BCC1B,作CM‖BC1,交B1C1延长线于M,则A1CM就是直线BE和A1C所成的角,AC=2a,AB=BC=√ 2a,BC1=√(BC^2+CC1^2)=
求什么再问:我发错了,,,,没什么
他这是合并同类项(sin^A+sin^B)sin(A-B)=(sin^A-sin^B)sin(A+B)sin^Asin(A-B)+sin^Bsin(A-B)=sin^Asin(A+B)-sin^Bsi
连接BD∵∠EDF=∠BDC=90º∠EDB=∠CDF∵等腰直角三角形ABC∴BD=CD∠C=∠ABD∴⊿BDE≌⊿CDF∴CF=BE=5AE=BF=12根据勾股定理得EF=13
由向量AB与向量BC垂直且等长AB.BC=0,故求得BC=(3,-1)或(-3,1).AC=AB+BC=(1,3)+(3,-1)=(4,2)或AC=(1,3)+(-3,1)=(-2,4)
如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y
解题思路:你题目要发完整解题过程:你题目要完整,而且三角形中边角要写清楚,大写指角,他的对边表示边用小写,你重新发,好吗?而且应该是b=c=根号2吧,后面的题不完整,谢谢合作。最终答案:略
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD