如图 在直三棱柱ABD-A1B1C1中,角BAC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:32:59
证明:(I)取AB的中点M,∵AF=14AB,∴F为AM的中点,又∵E为AA1的中点,∴EF∥A1M在三棱柱ABC-A1B1C1中,D,M分别为A1B1,AB的中点,∴A1D∥BM,A1D=BM,∴A
△CDE的面积不等于CD*DE/2吗CD垂直于平面ABB1A1,所以CD垂直于DE
面积:(20根号300)+2100体积:350根号300
1)因为A1E比EB=A1F比FC所以EF//BC所以EF1EF//平面ABC(2)因为A1D⊥B1CA1D⊥CC1所以A1D⊥平面BB1C1C又因为A1D属于面A1FD所以平面A1FD垂直于平面BB
解题思路:一条线和一个平面中一条直线平行就说线平行面。解题过程:
第一题:通过面面平行证明线面平行找B1C1中点H,连接MH,NH因为M,H分别为A1B1,B1C1中点所以MH//A1C1又因为A1C1属于面ACC1A1MH不属于面ACC1A1所以MH//面ACC1
连接A1B交AB1于E,则E为A1B中点,又D为BC中点,故A1C平行DE(中位线平行定理)DE在平面AB1D上,故A1C平行面AB1D
有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两个侧面的公共边叫做棱柱的侧棱,侧
以a为原点,ab为x轴,ac为y轴,aa1为z轴建立空间直角坐标系.a(0,0,0)a1(0,0,1)b(根号3,0,0)c(0,根号3,0)设q(x,0,1)x∈(0,根号3)平面abc的法向量为(
1向量BN=向量AB+向量AN(向量BN)平方=(向量AB)平方+(向量AN)平方+2(向量AB)*(向量AN)=2+1+0=3所以,可得BN=根号3.2向量BA1*向量CB1=(向量BB1+向量B1
过B作AC垂线交于D,连接C1D,角BC1D即为所求.tanBC1D=二分之根号三/二分之根号十七,再求反函数.
/>题目应是这个:如图,在直三棱柱ABC-A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D⊥B1C &n
由于是直棱柱,则C1M⊥AA1,又由于A1C1=B1C1,则C1M⊥A1B1,从而C1M⊥平面AA1B1B.易证C1M//CN,C1M//平面CB1N,由于四边形AMB1N是平行四边形,则AM//B1
过B作截面BA2C2∥面A1B1C1,分别交AA1,CC1于A2,C2.如图2,则原几何体可视为四棱锥B-ACC2A2与三棱柱A1B1C1-A2BC2的组合体.作BH⊥A2C2于H,则BH是四棱锥的高
三棱柱三角形三边为9sqrt(6^2+4.5^2)=7.5sqrt(3^2+4.5^2)=3sqrt(13)/2三角形面积=1/2*9*4.5=81/4侧面分别为14X7.5,14X3sqrt(13)
(1)证法一:由直棱柱性质得AA1⊥平面A1B1C1,又∵C1M平面A1B1C1,∴AA1⊥MC1.又∵C1A1=C1B1,M为A1B1中点,∴C1M⊥A1B1.
中点时因为ACBC长为一AB为根号二AA1为根号二所以AA1B1B为正方形链接a1b因为AA1B1B为正方形所以AB1垂直A1B因为D为中点F为中点所以A1B平行于DF所以DF垂直于AB1因为DF属于
(1)证明∵正三棱柱∴BC//=B1C1∵BD=BC∴BD//=B1C1∴四边形BDC1B1是平行四边形∴BC1//DB1∵DB1在面AB1D内∴BC1//面AB1D(2)∵正三棱柱∴BB1⊥面ABC
(1)证明:∵ABC-A1B1C1是直三棱柱,∴A1C1=B1C1=1,且∠A1C1B1=90°.又D是A1B1的中点,∴C1D⊥A1B1.∵AA1⊥平面A1B1C1,C1D⊂平面A1B1C1,∴AA
证明:(1)因为E,F分别是A1B,A1C的中点,所以EF∥BC,又EF⊄面ABC,BC⊂面ABC,所以EF∥平面ABC;(2)因为直三棱柱ABC-A1B1C1,所以BB1⊥面A1B1C1,BB1⊥A