如图,BP,CP均是△Abc外角的角平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:56:44
如图:已知 BP,CP 分别是△ABC 的∠ABC,∠ACB 的外角角平分线,BP,CP 相交 于 P,试探索∠BPC

因为,∠BCE=∠A+∠ABC,∠CBD=∠A+∠ACB所以,∠2=1/2*(∠A+∠ABC),∠1=1/2*(∠A+∠ACB)所以,∠BPC=180-(∠1+∠2)=180-1/2*(∠A+∠ACB

如图,在△ABC中,①P是△ABC内任意一点,∠BPC与∠A有怎样的大小关系?如果BP,CP分别

∠BPC>∠A证:连接AD,并延长AD交BC与E∵三角形ADC中,∠EDC是外角∴∠EDC>∠DAC(三角形的一个外角大于不相邻的任意一个内角)∵三角形ADB中,∠EDB是外角∴∠EDB>∠DAB(三

如图,已知三角形ABC是等边三角形,点P是三角形ABC中的任意一点,分别连接AP,BP,CP,且AP=3,BP=4,CP

以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=

如图,在△abc中,ab=ac,点p是bc边上任意一点,是说明ab²-ap²=bp乘cp

从A做BC垂线,交BC于DAB²-AP²=AD²+BD²-(AD²+DP²)=BD²-DP²=(BD+DP)(BD-DP

如图,△ABC中,AB=AC,点P是边上任意一点,试说明AB²-AP²=BP·CP

证:作AD⊥BC,交BC于D则:AB^2=AD^2+BD^2AP^2=AD^2+PD^2∴AB^2-AP^2=BD^2-PD^2=(BD+PD)(BD-PD)=BP·CP

如图:已知BP、CP分别是△ABC的∠ACB的外角角平分线,BP、CP相交于O,试探所∠BPC与∠A之间的数量关系.

∵∠1=0.5∠DBC=0.5(180°-∠ABC),∠2=0.5∠ECB=0.5(180°-∠ACB)∴∠BPC=180°-(∠1+∠2)=180°-【0.5(180°-∠ABC)+0.5(180°

如图,已知BP,CP分别是△ABC的外角∠CBD,∠BCE的平分线.求证:(1)点P在∠BAC的平分线上.

1)∵BP平分∠CBD,∴点P到BC、BD的距离相等(角平分线上的点到这个角两边的距离相等)同理,∵CP平分∠BCE,∴点P到CB、CE的距离相等,∴点P到BD和CE(即AB、AC)的距离相等,∴点P

如图,在△ABC中,BD,CD是内角平分线,BP,CP分别是∠ABC,∠ACB的外角平分线.

(1)、据题意,在△ABC中∠ABC+∠ACB=180°-∠A=120°,在△DBC中∠D=180°-(∠DBC+∠DCB)=180°-(1/2)(∠ABC=∠ACB)=180°-120°/2=120

如图,已知BP、CP是△ABC的外角平分线,证明点P在∠BAC的平分线上.

证明:过点P分别过点P作PD⊥AM于D,PE⊥BC于E,PF⊥AN于F.∵BP、CP是△ABC的外角平分线,∴PD=PE,PE=PF,∴PD=PF.∴点P必在∠BAC的平分线上.(到角两边距离相等的点

如图:BP、CP是任意△ABC中∠ABC、∠ACB的平分线,可知∠BPC=90°+1/2A,

结论:∠P=1/2(∠A+∠D)[情况1]AB‖CD则∠PBC+∠PCB=1/2(∠ABC+∠BCD)=90°∠P=180°-90°=90°因为∠A+∠D=180°所以∠P=1/2(∠A+∠D)[情况

如图,BP ,CP分别平分∠ABC和∠ACD,且BP与CP相交于点P.

设∠ABP=∠CBP=∠1,∠ACP=∠BCP=∠2,由△ABC:∠A=180°-2∠1-2∠2(1)由△PBC:∠BPC=∠P=180-∠1-∠2(2)(2)×2-(1)得:2∠P-∠A=180°∴

已知:如图,BP,CP分别是三角形ABC的外角

过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC

如图,BP是△ABC的外角平分线,点P在∠BAC的角平分线上.求证:CP是△ABC的外角平分线.

证明:过P作三边AB、AC、BC的垂线段PD、PE、PF,∵BP是△ABC的外角平分线,PD⊥AD,PF⊥BC,∴PD=PF(角平分线上的点到角两边的距离相等),∵点P在∠BAC的角平分线上,PD⊥A

已知:如图,△ABC全等于△DCB.求证:AP=DP,BP=CP

分析与思路:要证BP=CP,就是要证∠CBP=∠BCP;要证∠CBP=∠BCP,就是要证,△ABC全等于△DCB,而这是已知条件,故BP=CP.另一方面,要证AP=DP,就是要证AC-CP=BD-BP

如图,三角形ABC.BP,CP是三角形ABC的外角平分线,求角A与角P的关系

相等再答:没让写证明就别写再问:让写证明了。。。再答:设角A为x度或直接使用。我没空呃作业还有不少。。。

如图在△abc中,ab>ac,ap是角平分线,求证:ab-ac>bp-cp

证明:在AB上截取AD=AC∵∠DAP=∠CAP,AP=AP,AD=AC∴△ADP≌△ACP∴CD=CP在△BDP中根据两边之差小于第三边BP-DP

如图,在△ABC中,∠A=50°,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数是 ___ .

∵在△ABC中,∠A=50°,∴∠ABC+∠ACB=180°-50°=130°.∵BP平分∠ABC,CP平分∠ACB,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12×130°=65°,∴∠BP

如图,在△ABC中,BD、CD分别是∠ABC、∠ACB的平分线,BP、CP分分别是∠ABC、∠ACB的外角平分线

1、角D=110度,角P=70度角A=40度,角B+角C=180-40=140度,1/2∠B+1/2∠C=70°,在△BDC中,∠D=180-70=110°∠B的外角+∠C的外角=360°-140°=

如图:已知BP、CP分别是△ABC的外角角平分线,BP、CP相交于点P,试探索∠BPC与∠A之间的数量关系.

∠BPC=90-∠A/2∵∠DBC=180-∠ABC,BP平分∠CBD∴∠PBC=∠CBD/2=(180-∠ABC)/2=90-∠ABC/2∵∠BCE=180-∠ACB,CP平分∠BCE∴∠PCB=∠