如图,O是正三角形ABC的中心,MP=PQ=QN,三角形OPQ的面积是1CM2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:19:54
已知,如图,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,探索:PA,PB,PC的关系

PA=PB+PC.理由: 在PA上截取PD=PB,连接BD,∵ΔABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠P=∠C=60°,∴ΔPBD是等边三角形,∴PB=BD,∠PBD

如图,已知△ABC的边长是为1的正三角形,M,N分别是边AB,AC上的点,线段MN经过△ABC的中心G.设∠MGA= a

1、过G作GD垂直ABGE垂直AC,作AF垂直MN,连接AG,BG由于G是中心,则AG=BG=根号3/3GD=GE=根号3/6因此AF=AG*sin(π-a)=AG*sina=根号3*sina/3MG

1)已知:如图1,三角形ABC是圆O的内接正三角形,点P为弧BC上一动点,求证PA=PB+PC

以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 

如图,将正三角形ABC绕O点逆时针方向旋转120度,作出旋转后的图形

将A,B,C三点与O点连接起来,分别将OA,OB,OC逆时针方向旋转120度,就可以了

如图,△DEF是正三角形,AD=BF=EC,求证:△ABC是正三角形.

如果用初中的做法的话,如下:经过仔细推敲,暂时未发现证明过程有问题

如图,△ABC中,AB=BC=AC=3,O是它的内心,以O为中心,将△ABC旋转180°得到△A′B′C′,则△ABC与

∵AB=BC=AC=3,∴S△ABC=943,∵△ABC≌△A′B′C′,∴每个小三角形的边长与大三角形边长之比为:1:3,即相似比为:1:3,∴小三角形与大三角形面积之比为:1:9,∴每一个小三角形

(2010•河东区一模)如图,△ABC是边长为a的等边三角形,O为△ABC的中心.将△ABC绕着中心O旋转120°.

①内切圆半径r=36a,外接圆半径R=33a;②如图画出△DEF,可知它是等边三角形.取BE的中点M,连接DM,由BD=BM=13a,且∠B=60°,得等边△BDM,∴DM=ME=13a,∠MDE=∠

已知,如图,∠MAN=60°,点B,D分别在AM,AN上,O是正三角形BCD的中心.

因为BDC为正三角形,且O为中心;所以∠BOD=120°;又因为∠BAD=60°;所以∠BAN+∠MOD=180°;所以四边形ABOD有外接圆;因为BO=OD,所以弧BO=弧OD连接AO,在ABOD圆

如图,正三角形ABC外接圆的半径为R,求正三角形ABC的边长,边心距,周长和面积.

正弦定理a/sinA=2R(R为外接圆的半径)边长为aa=2R*sin60°=√3*R边心距d是外接圆半径的一半d=R/2周长=3√3*R面积S=3*边长*边心距/2=3√3*R^2/4

如图,半径为2的正三角形ABC的中心为O,过O与两个顶点画弧,求这三条弧所围成的阴影部分的面积.

连接AA′、BB′、CC′;∵△ABC是正三角形,∴△OAB′也是正三角形;∴S弓形OA=S扇形AB′O-S△AB′O=60π×22360-2×3×12=2π3-3;所以S阴影=6×(2π3-3)=4

如图,O是正三角形ABC内任意一点,OE⊥BC,OF⊥AC,OD⊥AB,试说明OD,OE,OF的和等于正三角形ABC的高

证明:连接OA,OB,OC设AB=a那么S△ABC=S△OAB+S△OBC+S△OAC所以1/2a*AM=1/2a*OD+1/2a*OE+1/2a*OF两边同时除以1/2a可得AM=OD+OE+OF再

如图,点O是正方形ABCD的对称中心,

解对称理由如下连接AC,∵O是正方形ABCD的对称中心∴OA=OC,AB∥CD∴∠OAH=∠OCM∵∠AOH=∠COM∴△AOH≌△COM(ASA)∴OH=OM∴△AO

如图,⊙O为正△ABC的内切圆,四边形EFGH为⊙O的内接正方形,且EF=根号2,求正三角形.

∵EFGH是正方形,且EF=√2∴正方形对角线=EG=FH=√[(√2)²+(√2)²]=2∵圆O是正方形EFGH的外接圆,又是正△ABC的内切圆∴圆直径=2,半径=1设AB切圆于

O是边长为1的正三角形ABC的中心 将三角形ABC绕点O(正三角形重心)沿逆时针方向旋转180度的三角形A1B1C1则

连接各交点,将重叠部分分为了6个小三角形,可以看出这6个小三角形是全等的正三角形,且和非重叠部分的6个小三角形也全等.从而知道重叠部分的面积为6/9*原三角形的面积√3/6

已知,如图O是正方形ABCD的中心,

(3)作EH垂直BD于点H,因为BE是角DBC的平分线,角BCD=90,所以,EH=CE,BH=BC.由(1)、(2)可知,BE=DF=2DG=2根号2.设AB=X,CE=Y,则DH=BD-BH=X(

如图1、2、3、……n、M、N分别是圆O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE

第一个是120度,第二个90度,第三个72度.以第一个为例:可以在AC上取一点P,让AP=CN=BM.这样三角形OMN,ONP,OPM全等角MON=360/3=120度同理:正n变形该角度是360/n