如图,以o点为圆心的直径ab为10cm,xuanac为6cm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:36:58
证明:连接AC,AD∵AB是直径,∴∠ACB=90º∵AC=½AB∴∠CBA=30º同理,∠DBA=30º∴∠CBD=60º∵∠CAB=∠DAB=∠C
因为,DC切圆心O于点C,所以OC垂直DC,又AD垂直DC.所以OC平行于AD.根据平行线的性质,所以∠BAD=∠BOC.又根据圆周角定理:同弧所对圆周角是圆心角的一半.所以2∠CAB=∠BOC=∠B
连OC,因CD切圆O于C,故OC⊥CD,又AD⊥CD,∴AD‖OC,∴∠DAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO=∠DAC,即AC平分∠DAB.
证明要点:连接OC、OD、BC、BD根据题意知OC=OB=BC=BD=OD所以△BOC和△BOD是等边三角形所以∠BOC=∠BOD=∠OBC=∠OBD=60度所以∠AOC=∠AOD=∠CBD=120度
不妨设圆O的半径是1,则易知圆B的半径是根号2,圆A的半径是1三角形AHB中,AH=1,BH=根号2,AB=2根据余弦定理得cos角HAB=(AH²+AB²-BH²)/(
郭敦顒回答:应是已知直角三角形ABC,以BC为直径,O为圆心的半圆交AC于点F,AB⊥BC,AB=3,BC=4,AD平分∠BAC,DD在BC上,…解答为什么AB/BD=AC/CD?作DP⊥AC,∵AD
我刚开始看到这个题的时候我也蒙了但大家都被这个表面现象给迷惑了因为大家只看到了题中的AB=CA这个条件连接AD但是注意∠ADB等于90°(因为它所对的弧是AB直径)这是问题的突破口!因为AB=AC且∠
观察图形,发现:阴影部分的面积是两半圆面积差的一半,即S阴影=12(S大圆-S小圆)=12(π×32-π×12)=4π.
解题思路:本题考查了垂径定理,即垂直于弦的直径必平分炫,再结合勾股定理即可解答出:两个圆的半径根号2和根号5.解题过程:最终答案:答案:根号5,根号2.
证明:∵OA=OB,CD⊥AB∴∠AOD=∠BOD(三线合一)∵OD=OD∴△AOD≌△BOD(SAS)∴AD=BD数学辅导团解答了你的提问,理解请及时采纳为最佳答案.
(1)方法一:以O为原点,AB、OD所在直线分别为x轴、y轴建立平面直角坐标系,则点A(-2,0),B(2,0),P(3,1).设双曲线实半轴长为a,虚半轴长为b,半焦距为c,则2a=|PA|−|PB
证明:连接AC,AB,BC,BD,过C,D作CQ,DN垂直AB于点Q,N.则PA^2=AQ*AB,PB^2=BN^AB,PA^2-PB^2=(PA+PB)(PA-PB)=(AQ-BN)AB,即:PA-
1、证明:连接CE∵直径BC∴∠BEC=90∴∠ACE+∠CME=90∵AD⊥BE∴∠CAD+∠AMB=90∵∠CME=∠ANB∴∠ACE=∠CAD∵∠ACE、∠FBE所对应圆弧都为劣弧EF∴∠ACE
∵AC=2,AC、AD是方程的两个根∴把x=2代入方程得,2*2-2k+4√5=0解之得k=2+2√5把k=2+2√5带入原方程得x²-(2+2√5)x+4√5=0(x-2)(x-2√5)=
AE=OE=AO三角形AOE为正三角形,角AOE=60度,角COE=30度,角FOE=120度则AE,CE,EF分别是圆O的内接六边形,正十二边形,正三角形的一边
(1)略(2)BE=BG+EG=BD+EF,理由是:设FD与AE交于点O,过O做OG⊥DE,∵∠AED=∠ADF,且∠ADF=∠AED∴∠AED=∠AED∴FE=EG又∵弧AB=弧CD∴∠DAB=∠A
(1)连接AC因弧AB=弧CD,则AB=CD,则∠ADB=∠DAC(相等弦对应圆心角相等)因∠ADB=∠DAC,∠DBA=∠ACD=90度(直径所对角为90度),AD=AD,则三角形DBA全等三角形A
(1)BC所在直线与小圆相切过O作OF⊥BC在直角△ACO和直角△OCF中,∠AC0=∠FCO,∴AO=FO又AO为半径,所以F在小圆上,所以直线BC外切于小圆(2)关系:BC=AD+AC在直角△AC
连接OA,OB,AD,有AO=AD=OD,所以∠AOD=60° 同理,∠BOD=60°,所以∠AOB=120°.还可得出∠AOC=180°-60°=120°,所以∠AOB=∠AOC=∠BOC