如果是阶实对称矩阵的n重特征值,那么线性方程组仅有n个彼此正交的解向量.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:40:44
对称正定矩阵的特征值问题

前面两个问题是肯定的,后面题目问的是不是有问题,正定矩阵的特征向量?

n阶实对称矩阵特征值书上通过简单的证明说明了n阶实对称矩阵的特征值必然是实数,那么如果把特征多项式展开的话,是不是都是一

是的再问:哦,太神奇了。根据书上的一个简单证明,好像可以推导出这个结果。再答:呵呵是这样

设A是数域P上的n阶矩阵,数a为A的n重特征值,如果A在P上相似于对角矩阵,证明A=aE为数量矩阵

由于A可对角化,故A的最小多项式无重根(这是个定理)又由于a为A的n重特征根,故A有n个初等因子,都为λ-a故A的若当标准型为diag(a,a,...,a)故存在可逆矩阵P使得P^(-1)AP=dia

特征值均为实数的正交矩阵为对称矩阵

要用到两个性质:性质1:正交阵A的特征值λ的模|λ|是等于1的.性质2:如果λ是A特征值,则λ²是A²的特征值.还要用到Jordan标准型的相关知识.就可以证明了.详细见参考资料.

对称正定矩阵的特征值问题3

3.对于对称方阵A(不一定正定)来说,它一定能有n个非负特征值吗?显然不能.比如-E,没有听说过负定矩阵吗?

若λ为A的k重特征值如果A是n阶矩阵 k是A的m重特征值 则属于k的线性无关的特征向量的个数不超过m个.其中 k是A的m

重特征值的意思就是特征多项式的重根.举个例子,有一个三阶矩阵A,400031013它的特征值多项式为(4-λ)(λ²-6λ+8)=(2-λ)(4-λ)²其中λ=4是2重根,我们就说

对称正定矩阵的特征值问题2

可能不可逆的,对称矩阵又很多的,比如就第一行第一列元素为1,其他元素都为0的三阶方阵,显然是不可逆的

对于实对称矩阵或可相似对角化的矩阵,其秩就是非零特征值的个数(其中n重根以n个记),如果0不是该矩阵的特征值,此矩阵满秩

设原矩阵为A,相似对角矩阵为B,则存在可逆矩阵P,使得:B=P^(-1)·A·P由于乘以一个可逆矩阵,矩阵的秩不变,∴ R(B)=R(A)如果0不是该矩阵的特征值,则R(A)=R(B)=n所

n阶非零矩阵A只有特征值0 那么0是A的n重特征值么?

是.n阶矩阵有n个特征值,重根按重数计

对称正定矩阵的特征值问题4

对于非对称矩阵A,其特征值可能出现虚数,但不论如何总有μ_min再问:也就是说此时对应的特征向量也有可能是复数域的了?另外,要是只在实数域内求特征值,会出现什么结果啊?再答:一般来讲特征值和特征向量当

n阶实对称,非奇异矩阵一定具有n个不同的特征值吗?除了对角矩阵且对角线元素有相同的矩阵外

这种结论显然是错的,并且讨论特征值的时候是否奇异一般不重要,因为可以做位移有一个比较相近的结论n阶实对称不可约三对角矩阵具有n个互不相同的实特征值证明毫无难度,你自己去证

证明 如果一个实对称矩阵A的特征值皆大于0,那么它是正定的

因为矩阵A为实对称矩阵所以存在可逆矩阵P,使得P^TAP=Λ=diag(λ1,λ2,...λn)因为特征值λi>0所以矩阵Λ为正定矩阵所以矩阵Λ的正惯性指数=n又因为矩阵A合同于矩阵Λ所以矩阵A的正惯

如果一个n阶矩阵,它的特征值是2n-1,n-1(n-1重),为什么特征值不为零呢?n可以等于1啊?

若n=1,1阶矩阵只有一个特征根,怎么会有2n-1=1和0两个特征根呢?

设A为n阶反称矩阵,证明:如果 入.是矩阵A的特征值,则 -入.也是A的特征值.

由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.

线性代数中实对称矩阵的每个单重特征值只有一个对应的特征向量吗?

实对称矩阵的每个单特征值只有一个对应的特征向量.k重特征值有k个对应的特征向量.故实对称矩阵可以对角化.

实对称矩阵重特征值所对应的特征向量正交之后,是不是原特征值所对应的特征向量

是的属于某特征值的特征向量的非零线性组合仍是其特征向量

对于非零矩阵A,A的k次方等于零矩阵,则0为A的k重特征值还是n重特征值!

如果n是矩阵A的阶数,那么0是A的n重特征值,k和重数没有什么关系再问:n为A的阶数,为啥呢,我觉得只有k重是零根,剩下的不一定是零根呢再答:如果A满足多项式f(A)=0,那么A的任何特征值λ都满足f