已知abc为正实数,求证2 a+b+2 b+c+2 c+a≥9 a+b+c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:03:09
这道题有错.比如取a=11/10,b=1,c=19/21;那么ab+bc+ca=3,但是a^2+b^2+c^3+3abc=1.21+1+(19/21)^3+20.9/7约等于5.937不满足≥6;所以
正确的题应该是:设正实数a、b、c,满足a≤b≤c,且a^2+b^2+c^2=9.证明:abc+1>3a证明:因为2bc=b^2+c^2-(c-b)^2,所以在a固定的时候(c-b)^2越大则bc越小
证明:因为为正实数,由平均不等式可得1/a+1/b+1/c≥3倍三次根号下1/a*1/b*1/c即1/a+1/b+1/c≥3/abc∴1/a+1/b+1/c+abc≥3/abc+abc又3/abc+a
证明:a、b、c互不相等,由基本不等式,得:a^4+b^4+c^4=1/2(a^4+b^4+b^4+c^4+c^4+a^4)>1/2(2a²b²+2b²c²+2
【注:用柯西不等式证明】证明:【1】易知,2(a+b+c)=[(a+b)+(b+c)+(c+a)].【2】由题设及柯西不等式可得:[(a+b)+(b+c)+(c+a)]×[2/(a+b)+2/(b+c
a^2+b^2≥1/2*(a+b)^2所以√(a^2+b^2)≥√2/2*(a+b)同理√(a^2+c^2)≥√2/2*(a+c)√(c^2+b^2)≥√2/2*(c+b)所以根号(a^2+b^2)+
2(1/a^2+1/b^2+1/c^2)=2(b^2+c^2+a^2)/(abc)^2=2(a^2*b^2+a^2*c^2+b^2*c^2)=a^2(b^2+c^2)+b^2(a^2+c^2)+c^2
可证sqr(a^2+b^2)>=sqr(2)(a+b)/2(平方即可)由sqr(a^2+b^2)>=sqr(2)(a+b)/2sqr(a^2+c^2)>=sqr(2)(a+c)/2sqr(c^2+b^
a>0,b>0平方大于等于0(√a-√b)²≥0a-2√ab+b≥0a+b≥2√ab(a+b)/2≥√a
(a+b+c)^2/3≤a^2+b^2+c^2√3a+2+√3b+2+√3c+2≤√[3(3a+2+3b+2+3c+2)]=√[3(3(a+b+c)+6)]=√[3*(3+6)]=√27
(1)(a3+b3)-(a2b+ab2)=(a3-a2b)-(ab2-b3)=a2(a-b)-b2(a-b)=(a2-b2)(a-b)=(a+b)(a-b)2.因为a,b为正实数,所以a+b>0,(a
a、b为正实数,求证a^2/b+b^2/a≥a+b(a^2/b+b)≥2根号下(a^2/b*b)=2a,(b^2/a+a)≥2根号下(b^2/a*a)=2b,两式相加:a^2/b+b+b^2/a+a≥
(1)证明:(a-1)^2=a^2-2a+1>=0所以a^2+1>=2aa^2+a+1>=3ab^2+b+1>=3bc^2+c+1>=3c三个正的同向不等式相乘就可知(a^2+a+1)(b^2+b+1
解题思路:本题根据多项式之间的乘法化简为=1/2×(a+b+c)[(a-b)²+(b-c)²+(c-a)²]的形式即可判断解题过程:证明:对于正数a、b、c,有a3+b3+c3≥3abc成立,等号当且
04175106811,∵ab+a+b+1=(a+1)×(b+1),ab+ac+bc+c^2=(a+c)×(b+c),∴(ab+a+b+1)(ab+ac+bc+c^2)=(a+1)(b+1)(a+c)
由均值不等式:a+b≥2√ab及平方均值不等式:(a²+b²)/2≥[(a+b)/2]²得:(a²+b²)/(2c)+c≥2√(a²+b
根据均值不等式,BC/A+CA/B>=2C同理AC/B+AB/C>=2ABC/A+BA/C>=2B所以2(bc/a+ca/b+ab/c)>=2(a+b+c)得证
这个题证法很多,给你两种:证法一:1/a-1=(a+b+c)/a-1=(b+c)/a≥2【√(bc)】/a1/b-1=(c+a)/b≥2【√(ca)】/b1/c-1=(a+b)/c≥2【√(ab)】/
﹙a+b)(b+c)(c+a﹚≥﹙2√ab﹚﹙2√bc﹚﹙2√ca﹚=8abc=8
a+b+c≥3(abc)(1/3)即abc开三次方同理a2+b2+c2≥3(a^2b^2c^2)(1/3)则(a+b+c)(a2+b2+c2)>=3(abc)(1/3)*3(a^2b^2c^2)(1/