已知abc是抛物线y 2 2px上的三个点,且AB垂直于AC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 10:51:38
设抛物线的方程为y^2=2px(p>0),则焦点为(p/2,0)依题意可设A(y1^2/2p,y1),B(y2^2/2p,y2),C(y3^2/2p,y3),由于B,C在直线4x+y-20=0上所以将
设抛物线S:y²=4aX与l连立得:4X²-(40+a)+100=0XB+XC=(40+a)/4YB+YC=20-4XB+20-4XC=-a重心过直线X-4Y+b=0把((XC+X
直线和x轴交点(4,0),y轴是(0,-2)F(4,0)p/2=42p=16F(0,-2)p/2=22p=8开口分别向右和向下所以y²=16x和x²=-8y
设三点为A(x1.y1)B(x2,y2)C(x3,y3)重心坐标(xm,ym)考虑xm任取两点(不妨设为A和B),则重心在以AB为底的中线上.AB中点横坐标为(x1+x2)/2重心在中线距AB中点1/
(1)点(3,m)在y轴右侧,因此设抛物线方程为y^2=2px,其焦点(p/2,0),准线x=-p/2,根据抛物线定义,点(3,m)到准线距离等于4,即3+p/2=4,解得p=2,所以抛物线方程为y^
x^2=2*4y,p=4,焦点坐标F(0,2),找出A点关于Y轴的对称点为B(2,4),连结BF,交抛物线于P,取第二象限交点,即为所求,直线BF方程为:(y-2)/(x-0)=(4-2)/(2-0)
抛物线过点(-5,m)可知抛物线开口向左;准线方程x=p/2;抛物线上任一点到焦点的距离等于到准线的距离因此:p/2-(-5)=6==>p=2因此抛物线方程为:y^2=-2px=-4x;
因为对称轴x,所以设抛物线为y^2=2px(p>0),(y^2=-2px,p>0)交点坐标为F(p/2,0),把这个代入双曲线方程,求出p=4.(负的舍掉)所以方程为y^2=8x,or,y^2=-8x
设A(0,0)B(x,y)C(x,-y)BC的距离和AB的距离相等得出√(x^2+y^2)=2y化简得3y^2=x^2再加上原题的y^2=2x得出一个二元二次方程{3y^2=x^2}&{y^2=2x}
I)由点A(2,8)在抛物线y2=2px上,有82=2p•2解得p=16所以抛物线方程为y2=32x(2)由于线段BC的中点M不在x轴上,所以BC所在的直线不垂直于x轴.设BC所成直线的方
要不要?要我就给你做,免得做了不给分再问:你要保证做对,做好,做快才行呀。如果你愿意,先做着,好的话再给你加5~10分再答:设分别为x1和x2,C点的坐标为(0,4),又因为垂直,所以(x1,-x1^
过A作AM∥x轴,分别过B、C作x轴的垂线,交AM于D,E.则S△ACE=½(3+1)×(9-1)=16,S△ABD=½(2+1)×(4-1)=9/2,S梯形CBDE=½
BC直线方程为 y-11= - 0.25(x+4)
直线与x轴Y轴分别交于(-12,0),(0,36)设焦点在X轴时方程为Y^2=2PX(P>0)因为-P/2=-12所以P=24所以所求抛物线方程为Y^2=-48X同理,得焦点在Y轴是所求抛物线方程为X
焦点坐标(8,0),所以可以由重心坐标公式知B、C横坐标之和为22,纵坐标之和为-8,所以BC过(11,-4)点,设出B(x1,y1),C(x2,y2)代入抛物线两个式子作差,可得斜率为-4,所以方程
抛物线参数方程为y=t,x=t^2/2p设B(t1^2/2p,t1),C(t1^2/2p,-t1),A(t2^2/2p,t2)所以求得AC的直线方程为y-t2=(t2-t1)(x-t2^2/2p)/(
F(1,0)准线x=-1设直线x=t与抛物线相交于两点(t,2√t)(t,-2√t)要使得其为正三角形就必须使得两个交点到焦点距离和这两个交点距离等,转化一下,交点到焦点距离等于交点到准线的距离可得t
抛物线的几何性质之一是抛物线上的点到焦点的距离等于该点到准线的距离对于这道题可设标准方程为y^2=-2px(p>0)则准线方程为x=p/2,而抛物线上一点(-5,m)到焦点的距离为6即有该点到准线的距
设A,B,C(x1,y1)(x2,y2)(x3,y3)重心(x1+x2+x3)/3,(y1+y2+y3)/3x=ky*y焦点(k/2,0)三点在线上bc在直线上代入方程化简由于在x上,故用y替换x(k