已知AB是函数f(x)=1 2 log2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 08:41:51
a=(sinx,1),b=(1,cosx)ƒ(x)=a•b=(sinx)(1)+(1)(cosx)=√2sin(x+π/4)ƒ'(x)=√2cos(x+π/4)F(x)
f(x)=sinx+cosxf'(x)=cosx-sinx=√2((1/√2)cosx-(1/√2)sinx)=√2(cos(x+π/4))f'(x)的最小正周期=2πy-f'(x)=sinx+cos
(1)已知函数f(x)=sinx+cosx,则f′(x)=sinx-cosx.代入F(x)=f(x)f′(x)+[f(x)]2易得F(x)=cos2x+sin2x+1=2sin(2x+π4)+1当2x
∵f(x)=sinx+cosx,∴f'(x)=cosx-sinx,∴F(x)=f'(x)[f(x)+f'(x)]-1=(cosx-sinx)(sinx+cosx+cosx-sinx)-1=2cos^2
∵函数f(x)=(12)x(x≤0)1−3x(x>0),∴f(-1)=(12)−1=2,∴f[f(-1)]=f(2)=1-3×2=-5.再由函数的解析式可得,函数f(x)在R上是减函数,故由f(2a2
(1)f'(x)=a+lnx+1f'(t)=a+lnt+1=3lnt=2-at=e^(2-a)f(t)=at+t*lnt=3t-ea*e^(2-a)+(2-a)*e^(2-a)=3e^(2-a)-ee
函数f(x)是R上的偶函数,可得f(-x)=f(x),又f(1-x)=f(1+x),可得f(2-x)=f(x),故可得f(-x)=f(2-x),即f(x)=f(x-2),即函数的周期是2又x∈[0,1
设f'(x)=2kx+bf(x)=kx^2+bx+c则x^2f'(x)-(2x-1)f(x)=2kx^3+bx^2-[2kx^3+(2b-k)x^2+(2c-b)x-c]=(k-b)x^2+(b-2c
函数f(x)=-12x2+x的对称轴方程式x=1,当m<n≤1时,函数在区间[m,n]上为增函数,由题意有f(m)=−12m2+m=2mf(n)=−12n2+n=2n解得:m=-2,n=0.当1≤m<
楼主,第一问你说了的很简单所以我直接用楼上的结论f(x)=x^2-6x+8.第二问,我不知道你学过导数了没.f(x)=g(x)f(x)=x^2-6x+8=k/x-1,进一步化简x(x^2-6x+9)=
(1)A(-2,-4)(2)当四边形ABPO为菱形时,P(-2,4);当四边形ABPO为等腰梯形时,P(2/5,-4/5);当四边形ABPO为直角梯形时,P(-4/5,8/5).
(1)从几何的角度不难看出,f(x)是下凸函数,故其切线总是位于f(x)图象的下方,显然有f(x)≥kx+b成立.下面从代数的角度证明:设任一切点坐标为(m,e^m)l:y-e^m=e^m(x-m),
第一个画个图很容易理解的,具体计算过程如下设切点为(x'.y')则直线方程为y=e^x'(x-x')+e^x'即证F(x)=e^x-e^x'(x-x')-e^x',F(x)求导为e^x-e^x'当x=
不等式解集(-1,5/3)x
去绝对值,写成分段函数的形式f(x)={x+1,x>=-1.{-x-1,x=0|
1、设x1>x2,则a-x1f(x2),f(a-x2)>f(a-x1).F1-F2=f(x1)-f(x2)+f(a-x2)-f(a-x1)>0,由定义可证得.2、中A是指什么?【二】值域为[-5,-1
复合函数单调性.就是先求Log2X的单调性.在求(x²-2x-3)单调性.当两个单调性不同时,就是f(x)为减函数
∵函数F(x)=f(x)-|lgx|的零点,即为函数y1=|lgx|,y2=f(x)的图象的交点,又∵函数y=f(x)是周期为2的周期函数,且当x∈[-1,1]时,f(x)=2|x|-1,在同一坐标系
在区间[-2,-1]上总有lf(x)l1时,f(x)在区间〔-2,-1〕上大于0的所以logat√2当0