作业帮 > 数学 > 作业

已知函数f(x)=sinx+cosx,f'(x)是f(x)的导函数.

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 11:23:14
已知函数f(x)=sinx+cosx,f'(x)是f(x)的导函数.
已知函数f(x)=sinx+cosx,f'(x)是f(x)的导函数,求f'(x)及y-f'(x)的最小正周期,求当x属于【0,π、2】,F(x)=f(x)f'(x)+f^2(x)的值域
是求当x属于【0,π/2】
f(x) = sinx+cosx
f'(x) = cosx -sinx
= √2((1/√2)cosx - (1/√2)sinx)
= √2(cos(x+π/4))
f'(x) 的最小正周期 = 2π
y-f'(x)
=sinx+cosx -(cosx-sinx)
=2sinx
y-f'(x) 的最小正周期 = 2π
F(x)= f(x)f'(x)+[f(x)]^2
=(sinx+cosx)(cosx-sinx)+ (cosx-sinx)^2
= (cosx)^2 - (sinx)^2 + 1-2sinxcosx
= cos2x - sin2x +1
= √2((1/√2)cos2x-(1/√2)sin2x) +1
=√2(cos(2x+π/4)+1
F(x)=f(x)f'(x)+f^2(x)的值域 = [1-√2,2]