已知关于x的方程x的平方 2 m 2 x m的平方 4=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:23:11
一元一次方程式已知关于x的方程(m+1)x的平方丨m+2丨+3=0是一元一次方程式,求3分之2m的平方-m-2分之m2-

∵关于x的方程(m+1)x的丨m+2丨次方+3=0是一元一次方程式∴m+1≠0丨m+2丨=1m≠-1m=-1m=-3∴m=-3∴3分之(2m²-m)-2分之(m²-m)-6分之(m

已知关于x的方程x的平方-(2k+3)x+k的平方+3k+2=0

证:△=(2k+3)²-4×1×(k²+3k+2)=4k²+12k+9-4k²-12k-8=1>0所以无论K取何值,方程都有两个不相等实根.

已知关于x的方程x2-(m+1)x+?m2=0无实数根

1)、若是x^2-(m+1)x+m^2=0则(m+1)^2-4m^21或m=0,m

已知关于X的一元二次方程X2-(M2+3)X+1/2(M2+2)=0.(1)试证:无论m取何实数,方程有两个正根

x²-(m²+3)x+1/2(m²+2)=0判别式=(m²+2)²-4*(1/2)*(m²+3)=(m²+3)(m²+3

关于x的方程2x平方-(2m+1)x+m=0 m1=-1 m2=2 求该方程的解

2x²-(2m+1)x+m=0Δ=(2m+1)²-8m=4m²-4m+1=(2m-1)²Δ=9时,(2m-1)²=9==>m=-1或m=2m=-1时,

已知关于x的方程x的平方-(k+2)x+2k=0

x^2-(k+2)x+2k=0△=(k+2)^2-8k=k^2+4k+4-8k=k^2-4k+4=(k-2)^2≥0所以无论k取任何实数值,方程总有实数根另两边长恰是这个方程的两个根则x1+x2=k+

已知 m2-2n+n2-4m+5=0解关于x的方程(m2-n2)x=m-n 字母后面是 指数

(m²-4m+4)+(n²-2n+1)=0(m-2)²+(n-1)²=0所以m-2=n-1=0m=2,n=1所以m²-n²=3m-n=1所以

已知关于x的方程X平方-(k+2)x+2k=0

1.Δ=(-(k+2))²-4*2k=k²+4k+4-8k=(k-2)²>=0恒成立,所以方程总有实数根.2.x=(k+2±(k-2))/2x1=k,x2=2等腰三角形:

已知关于x的方程x2+2x+1-m2=0

(1)∵△=22-4×1×(1-m2)=4-4+4m2=4m2≥0恒成立,∴方程总有两个实数根;(2)由方程的两个实数根为x1、x2,根据根与系数的关系得出:x1+x2=-2,x1x2=1-m2,∵x

已知关于x的方程 x平方+(2m+1)x+m平方=2

方程化为x^2+(2m+1)x+m^2-2=0.(1)方程有两个相等的实根,则判别式为0,即(2m+1)^2-4(m^2-2)=0,解得m=-9/4,此时方程化为x^2-7/2*x+49/16=0,分

已知关于x的方程x2-2(m+1)x+m2=0.

(1)∵原方程没有实数根,∴△<0,∴[-2(m+1)]2-4m2<0,解得,m<-12,故m<-12时,原方程没有实数根.(2)∵原方程有两个实数根,∴△≥0,∴[-2(m+1)]2-4m2≥0,∴

已知关于x的方程mx2-(m2+2)x+2m=0.

(1)证明:∵m≠0,∴关于x的方程mx2-(m2+2)x+2m=0为关于x的一元二次方程,∵△=(m2+2)2-4m×2m=(m2-2)2≥0,∴方程总有实数根;(2)设x1、x2是方程mx2-(m

已知关于x的方程x-m2=x+m3

解方程2x+12=6x-2得:x=12;因为方程的解互为倒数,所以把x=12的倒数2代入方程x-m2=x+m3,得:2-m2=2+m3,解得:m=-65.故所求m的值为-65.

已知关于X的方程x2+(2m+1)x+m2=0有两个实根

由X1ν2-X2ν2=0得(X1+X2)(X1-X2)=0那么X1+X2=0或X1-X2=0(1)、X1+X2=0根据一元二次方程根与系数的关系可知X1+X2=-(2m+1)那么2m+1=0m=负2分

已知关于x的方程(m2-m)x2-2mx+1=0有两个不相等的实数根

(1)∵关于x的方程(m2-m)x2-2mx+1=0有两个不相等的实数根,∴m2−m≠0△=4m2−4(m2−m)>0,解得,m>0,且m≠1;∴m的取值范围是:m>0,且m≠1;(2)∵m为整数,m

已知关于x方程x−m2=x+m3

首先解方程x-1=2(2x-1)得:x=13;因为方程的解互为倒数所以把x=13的倒数3代入方程x−m2=x+m3,得:3−m2=3+m3,解得:m=-95.故答案为:-95.

已知关于x的方程x−m2=x+m3

x−12=3x−2,解得:x=35,∴方程x−m2=x+m3的解为x=53,代入可得:56-m2=53+m3,解得:m=-1,∴m2-2m-3=1+2-3=0.