已知数列an各项均为正数,4sn=(an 1)²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:49:09
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an2+n-4(n∈N*).

(1)∵2Sn=an2+n-4(n∈N*).∴2Sn+1=an+12+n+1-4.两式相减得2Sn+1-2Sn=an+12+n+1-4-(an2+n-4),即2an+1=an+12-an2+1,则an

已知等比数列an的各项均为正数且a1=2a2=1 a3^2=4a2a5求数列an的通项公式

a1=2,a2=1,等比1/2,an=2×(1/2)^(n-1).a1=2a2=1,a1=1,a2=1/2,等比1/2,an=1×(1/2)^(n-1).

已知数列{an}各项均为正数,其前N项和为sn,且满足4sn=(an+1)^2.求{an}的通项公式

4Sn=(an+1)^24Sn-1=(an-1+1)^2n-1为下标则4an=4Sn-4Sn-1=(an+1)^2-(an-1+1)^2化简得(an-1)^2=(an-1+1)^2则an-1=正负(a

已知各项均为正数的数列{an}满足(an+1)²-an+1×an-2an²=0,且a3+2是a2,a

∵(an+1)²-an+1×an-2an²=0∴(an+1+an)(an+1-2an)=0∴an+1-2an=0,an+1+an=0(舍去)∴an+1=2an∴an是等比数列,设a

已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列

1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=

求证等差数列!已知数列an的各项均为正数,前n项和为Sn,且满足2Sn=a∧2n+n-4

n=1时,2a1=2S1=a1^2+1-4a1^2-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=an^2+n-4-a

已知数列an的各项均为正数,前n项和Sn满足4Sn=(an+1)的平方.求an的通项公式?

4a(1)=[a(1)+1]^2a(1)=14a(n+1)=[a(n+1)+1]^2-[a(n)+1]^2[a(n)+1]^2=[a(n+1)-1]^2若a(n+1)>1a(n+1)=a(n)+2a(

各项均为正数的数列{an}的前n项和为S,且sn=1\8(an+2)².求证数列{an}是等差数列

sn=(1/8)(an+2)²S(n-1)=(1/8)[a(n-1)+2]²an=Sn-S(n-1)=(1/8){(an+2)²-[a(n-1)+2]²}=(1

已知数列AN的各项均为正数,且前N项和满足6Sn=an^2+3an+2,求数列通项公式

6Sn=an^2+3an+26S(n-1)=a(n-1)^2+3a(n-1)+26Sn-6S(n-1)=6an=an^2+3an+2-a(n-1)^2-3a(n-1)-26an=an^2+3an-a(

已知各项均为正数的数列{An}的前n项和Sn满足S1>1,且

1)6Sn=An^2+3An+2因为S1=A1所以6A1=A1^2+3A1+2A1^2-3A1+2=0(A1-1)(A1-2)=0因为A1=S1>1所以A1=2因为An=Sn-S(n-1)注S(n-1

已知数列中各项均为正数,sn是数列an 中的前N项和,且Sn=1/2.求数列an的通项公式

当n=1时,S1=a1=1/2(a1^2+a1),解得a1=1当n>1时,an=Sn-S(n-1)=1/2(an^2+an)-1/2[a(n-1)^2+a(n-1)],整理得[an+a(n-1)][a

已知数列{an}的各项均为正数,前n项的和Sn=(an+1)24

(1)a1=(a1+1)24,解得a1=1,当n≥2时,由an=Sn-Sn-1=(an+1)2−(an−1+1)24,得(an-an-1-2)(an+an-1)=0,又an>0,所以an-an-1=2

已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.

(1)当n=1时,a1=s1=14a21+12a1−34,解出a1=3,又4Sn=an2+2an-3①当n≥2时4sn-1=an-12+2an-1-3②①-②4an=an2-an-12+2(an-an

已知等比数列{An}的各项均为正数,a=8,a3 a4=48.求数列通项公式,

a2=8a3+a4=48可化为8(q+q²)=48==>q+q²=6==>q=2an=a2q^(n-2)=8·2^(n-2)=2^(n+1)再问:^这个是什么。。题目是a3a4=4

已知数列an的各项均为正数且a1+a2+a3+.an=1/2(an²+an)求证数列an是等差数

a1+a2+...+an=(1/2)(an²+an)a1+a2+...+a(n-1)=(1/2)(a(n-1)²+a(n-1))两式相减得an=(1/2)(an²+an)

1,已知各项均为正数的数列{An}满足:A1=1,

1.A(n+1)^2*An+A(n+1)*An^2+A(n+1)^2-An^2=0两边同除以A(n+1)²An²1/An+1/A(n+1)+1/An²-1/A(n+1)&

已知各项均为正数的数列{an}的前n项和为Sn,根号Sn是1/4与(an+1)^2的等比中项.

n>=2时,S[n]=1/4*(a[n]+1)^2;S[n-1]=1/4*(a[n-1]+1)^2两式相减得到a[n]=1/4*(a[n]^2+2a[n]-a[n-1]^2-2a[n-1])化简得到a

已知数列{an}中的各项均为正数,前n项和Sn满足4Sn=(an+1)平方,求{an}的同项公式

4a(1)=[a(1)+1]^2a(1)=14a(n+1)=[a(n+1)+1]^2-[a(n)+1]^2[a(n)+1]^2=[a(n+1)-1]^2若a(n+1)>1a(n+1)=a(n)+2a(

已知各项均为正数的数列{an}的前n项和为sn,且sn,an,1成等差数列,求数列{an}的通项公式

Sn、an、1成等差,则2an=Sn+1(n=1时,得a1=1),当n≥2时,有2a(n-1)=S(n-1)+1,则2an-2a(n-1)=an,即an/[a(n-1)]=2=常数,所以{an}是等比

已知各项均为正数的数列{an}前n项和为Sn,首相为a1,且½,an,Sn是等差数列,求通项{an}公式

由题意知2an=Sn+1/2,an>0,当n=1时,2a1=a1+1/2,解得a1=1/2,当n≥2时,Sn=2an-1/2,S(n-1)=2a(n-1)-1/2,两式相减得an=Sn-S(n-1)=