已知正方形ABCD的边长为4点M.N分别是BC.CD上的动点且BM=CN

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:46:37
已知正方形ABCD的边长为1,点E是AB边上的动点,则DE•DC

以AB、AD所在直线为x轴、y轴,建立坐标系如图可得A(0,0),B(1,0),C(1,1),D(0,1)设E(x,0),其中0≤x≤1∵DE=(x,-1),DC=(1,0),∴DE•DC=x•1+(

已知正方形abcd 的边长为4,将正方形abcd置于平面直角坐标系中,使点a与坐标系的原点重合,ab与x轴正半轴

两组解当abcd从x轴顺时针旋转30°时,b(2*根号3,2),c(2-2*根号3,2+2*根号3),d(-2,2*根号3)当abcd从x轴逆时针旋转30°时,b(-2*根号3,2),c(2+2*根号

已知四边形ABCD是边长为4的正方形

解题思路:利用等腰三角形性质解题过程:见附件最终答案:略

如图,已知正方形ABCD的边长为4,对称中心为点P,

再问:对称中心是什么?再答:

已知正方形abcd内阴影部分的面积为4平方厘米,求正方形的边长

寒樱暖暖为你先设,正方形的边长为A则阴影部分面积为:2×1/4×3.14×A^2所以正方形的面积为:A^2=4÷(2×1/4×3.14)=4÷1.57约=2.55厘米正方形的边长为:A=√2.55约=

已知:如图,正方形abcd的边长为4,g为对角线bd上的一点,dg=dc.h是ag上的一个动点,

因为DG=DC=AD所以三角形ADG是等腰的可以把这个三角形分离出来看连接HD因为HE⊥AD,HF⊥BD所以可以看作HE和HF分别是AHD和GHD两个三角形的高因为这两个小三角形的面积和是不变的(即三

已知在边长为12的正方形ABCD中有两个动点P,Q同?

PC=QD,AQ=PB,12-3t=t,t=3,AQ=3,AP=9,PB=3QA=DP,t=12*3-3t,t=9S-PQC=36,PC=6,t=10,Q在AB上,P在DC上,PC=6,QB=2,或假

已知正方形ABCD的边长为2,点P为对角线AC上一点,则(.AP

以A为坐标原点,以AB为X轴正方向,以AD为Y轴正方向建立直角坐标系,则A(0,0),B(2,0),C(2,2),D(0,2),∵P点有对角线AC上,设P(x,x),0<x<2所以.AP=(x,x),

如图,已知正方形ABCD的边长为10cm,点E在AB边

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

如图,正方形ABCD与正方形BEFG,点C在边BG上,已知正方形ABCD的边长为a,正方形BEFG的边长为b,用a,b表

(1)根据题意得:△CDE的面积为12a2;(2)根据题意得:△CDG的面积为12a(b-a)=12ab-12a2;(3)根据题意得:△CGE的面积为12b(b-a)=12b2-12ab;(4)根据题

已知正方形ABCD的边长为4a,求图中阴影部分面积.

设小正方形的x则面积S1=(1/2)*4a*(4a-x)=8a²-2ax面积S2=(1/2)*x²=(1/2)x²面积S2=(1/2)*4a*(4a+x)=8a²

已知:正方形ABCD的边长为4,AF与以BC为直径的半圆切于点E交CD于F.

没技术难度啊,建个坐标系,列个方程就行了

已知正方形ABCD的边长为2 点M是BC的中点

(1)四边形CDFP的周长=6,因为AF=FE,PE=PM,所以四边形周长即为AD+DC+CB=6.(2)连接OE、OF、OP,根据三角形AOF与三角形EOF全等、三角形EOP与三角形BOP全等可知,

在边长为8的正方形ABCD中,点O为AD上一动点(4

1、在RT△ODM中,DM²+OD²=OM².∵OM=OA,OD=8-OA.∴X²+(8-OA)²=OA²X²+64-16OA+O

如图,已知正方形ABCD与正方形AEFG,点F在边AD上,正方形ABCD的边长为a,正方形AEFG的边长为b.用a、b表

解法一延长GF和CD交于HS长方形BCHG=a(a+b)S△HDF=b(a-b)/2S△FGB=b(a+b)/2S△BCD=aa/2S△DBF=S长方形BCHG-S△HDF-S△FGB-S△BCD=a

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

如图,已知正方形ABCD的边长是4,对角线AC、BD相交于点O,另一个边长也为4的正方形OEFG,两个正方形重

不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4

已知点P是边长为8的正方形ABCD所在 平面外的一点,

取Q∈AB使AQ=3QB则QM=6QN=2∠MQN=∠PBC=60º对⊿MQN用余弦定理MN=2√7再问:请问:如何得出QM=6,QN=2?再答:相似三角形对应边成比例。

如图,正方形ABCD与正方形BEFG,点C在边BG上,已知正方形ABCD的边长为a,正方形的边长为b.用a、b表示下列面

因为AE平行于CD,所以E到CD的距离等于A到CD的距离,即a所以三角形CDE的面积等于1/2CD乘高,即1/2a*a三角形DEG的面积等于三角形CDE+CDG+CEG的面积和三角行CDG的面积等于1