已知矩阵a为2阶方阵,若行咧式A的值为2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:43:50
|-2A|=(-2)^3*|A|=-8*1/2=-4
AB=0,即B的每一列均为AX=0的解,现在对AX=0求解——对A进行初等行变换得112,从而满足x1+x2+2x3=0的解均为所求解.000000得AX=0的全部解为u(1,-1,0)+v(2,0,
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
因为n阶方阵A为正交矩阵,故A'A=E,得A^-1=A'可逆!且IA'AI=IA'IIAI=IAI^2=IEI=1.A^-1=A*/IAIA*=IAIA^-1=IAIA'故(A*)'A*=(IAIA'
3阶方阵A的特征值为2,-1,03阶方阵B=2A^3-5A^2+3E的特征值为2*2^3-5*2^2+3=-1,2*(-1)^3-5*(-1)^2+3=-4,2*0^3-5*0^2+3=3,|B|=(
原式右乘B的逆得A+B=-A^2*(B的逆)原式写成A(A+B)=-B^2……(1)两边同时左乘-B^(-2)得A+B可逆,其逆为-B^(-2)A
由于A(-1)=A*/|A|.A*=A(-1)|A|[A*](-1)=[A(-1)|A|](-1)由于|A|为一数值,所以左侧=[A(-1)](-1)/|A|=A/|A|.由于你的问题中A矩阵逆矩阵说
直接可以用下面的公式
此类行列式必须将两个项合并解:因为A*=|A|A^-1=(1/2)A^-1所以|3A^-1-2A*|=|3A^-1-A^-1|=|2A^-1|=2^4|A^-1|=2^4*|A|^-1=2^5=32.
因为A*=|A|A^-1=-2A^-1所以|4A^-1+A*|=|4A^-1-2A^-1|=|2A^-1|=2^3|A|^-1=-4.
A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A
|A*|=|A|^(n-1)=2^2=4.证:A*=|A|A^(-1),得|A*|=|A|^n*|A^(-1)|=|A|^(n-1).
A的特征值为1,-1,2A-5I的特征值是-4,-6,-3所以|A-5I|=(-4)*(-6)*(-3)=-72
四阶方阵A相似于B,A的特征值为2,3,4,5所以B的特征值为2,3,4,5B-I的特征值为2-1,3-1,4-1,5-1,即为:1,2,3,4所以|B-I|=1×2×3×4=24再问:为什么B的特征
你说的结论是成立的,它是行列式的性质.本题如图.经济数学团队帮你解答.请及时评价.再问:|10A*|=|10A|*(10A)^-1=10^3|A|*1/10*A^-1=100我这算法错了吗?再答:第一
只知道特征值是没法求出A的,如果还知道特征向量就可以求出A来.
(A*)^-1=(|A|A^-1)^-1=A/|A|(A^-1)*=(1/|A|A*)*=(1/|A|)*(A*)*(1/|A|)*=(1/|A|)^n-1(A*)*=A(|A|)^n-2(1/|A|