A,B都是正规矩阵 AB=BA
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:41:32
把A化到Jordan标准型之后就显然了也可以按图里的初等做法慢慢做
可以用矩阵运算如图凑出E-BA的逆矩阵.经济数学团队帮你解答,请及时采纳.再问:有没有简便的方法啊?再答:如果要求出逆矩阵,只能这样做。若只是证可逆,还可用公式|E-BA|=|E-AB|,行列式非零,
反证,若E-BA不可逆,则存在X不为0,使(E-BA)X=0(方和有非零解)->X=BAX,则(E-AB)AX=AX-ABAX=AX-AX=0也即(E-AB)Y=0有非零解(其中Y=AX),与题设矛盾
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.
碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor
A,B必为同阶方阵称为可交换再问:行列式、矩阵、向量的区别是:行列式是?;矩阵是?;向量是?再答:行列式是由n^2个数构成的按规律计算出的一个数值矩阵是一个数表向量是1行n列(或n行1列)的特殊矩阵
证明如下图,但你把条件写错了,应当是AB+BA=0.经济数学团队帮你解答,请及时采纳.
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
若常数l=0则AB=A,即B=E;若常数l非零,E=(E-lA^{-1}B)B,所以B可逆且E=B(E-lA^{-1}B),相减得lA^{-1}B^2=lBA^{-1}B,左乘l^{-1}A右乘B^{
一个矩阵A是正规阵的充要条件是存在矩阵X,使得X*AX是对角阵.其中X*是X的共轭转置.于是存在矩阵X,Y使得X*AX=K,Y*BY=J,其中K,J是对角阵,且可记K=diag(K1,K2,...,K
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
这个用双向证明.证明:由已知,A'=A,B'=B所以AB是对称矩阵(AB)'=ABB'A'=ABBA=ABA,B可交换.
只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ
实对称矩阵A,B,分别存在实对称正定矩阵C,D,使得A=C^2,B=D^2则有C'(AB)C=C^-1(CCDD)C=CDDC=C'D'DC=(DC)'DC=E'EE=DC可逆,所以C'(AB)C正定
需要正规阵的一个充要条件:X是正规阵的充要条件是X所有元素的模的平方和等于X的所有特征值的模的平方和,即||X||_F^2=sum|\lambda_i(X)|^2.先证明||AB||_F=||BA||
不行,取A=E,B为任意不为单位矩阵的矩阵有AB=BA,但A=B不成立但需要申明,此明A与B同型,即有相同的行数及列数
利用A-E与B-E的可逆性如图证明.经济数学团队帮你解答,请及时采纳.
只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A