ab均为3阶非零方阵 秩a等于2 且ab等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:35:15
(AB)^2=E,只能得到(AB)^(-1)=AB,(BA)^(-1)=BA等不到AB=BA.一般可交换相乘的:互为逆矩阵;方阵乘以数量阵也得不到AB=E.逆矩阵等于原阵的常见.举个例子吧010001
首先相似则特征值全部相同(等价秩相同合同正负惯性指数相同)则b的特征值为234b-e的特征值为123则|b-e|=6
|AB|=|A||B|=2*3=6.
这个直接双向证明就行了.证明:(A+B)^2=A^2+B^2+2ABA^2+B^2+AB+BA=A^2+B^2+2ABAB+BA=2ABBA=AB#再问:这里的A、B是n阶方阵对这个证明有什么影响啊?
可以.需注意:1.某行的K倍加到另一行时要左乘K,列变换时右乘K2.分块矩阵不满足对角线法则行列式0AmBn0=(-1)^mn|A||B|再问:你说的K是——可以和子块矩阵相乘的矩阵吗再答:是的!你对
证:AB=A+2BAB-A=2BA(B-E)=2B-2E+2EA(B-E)=2(B-E)+2E(A-2E)(B-E)=2E½(A-2E)·(B-E)=E所以B-E可逆,且其逆矩阵为½
因为AB=0所以B的列向量都是AX=0的解.所以B的列向量组可以由AX=0的基础解系线性表示所以r(B)
首先考虑联立线性方程组(1) AX=0, BX=0, 设其基础解析有n-r个向量.易见其解都是(A+B)X=0的解, 所以n-r≤n-r(A+B), 即r(A+B)≤r.将(1)的基础解系分别扩充为A
AB=0,则B的列向量都是AX=0的解,而r(B)=n,所以线性方程组AX=0至少有n个线性无关的解;设这个解集为S,则r(S)=n-r(A)>=n,即r(A)=0,所以r(A)=0,即A=0.如果您
因为AB=0所以B的列向量都是Ax=0的解又因为B不为0所以Ax=0有非零解所以|A|=0所以r(A)
证法一:考察矩阵μIABμI用第一行消第二行的B可以算出行列式,用第二行消第一行的A也能算出行列式,这两个行列式相等.令λ=μ^2,代入即得AB和BA的特征多项式相等,于是tr(AB)=tr(BA).
因为AB=0,所以B的列向量都是Ax=0的解又因为B≠0,所以Ax=0有非零解所以r(A)r1-r4,r3-r404-40a-201b-2102r1*(1/4),r2-ar1,r3-r101-100a
/>设f(x)=2x²+3则f(1)=5,f(2)=11,f(3)=21.因为A的特征值是1,2,3所以A²+3E的特征值为5,11,21所以|A²+3E|=5×11×2
AB=0的充要条件是B的列向量都是AX=0的解A-->112000000AX=0的基础解系为(1,-1,0)^T,(2,0,-1)^T令B=120-1000-10则R(B)=2,且AB=0.再问:我想
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们
|(AB)^3|=|AB|^3=(|A||B|)^3=(-2)^3=-8再问:设A方阵的行列式为5P为可逆矩形则det(P负一次方AP)等於多少再答:|P^-1AP|=|P^-1||A||P|=|A|
这个题是个错题,我令A和B均为n阶单位矩阵E,满足你的前提条件,但是AB=E不等于0
设方阵A的特征值和特征向量为 λ 和α再问:有没有更加简便或者基础一些的做法,谢谢再答:再简单也不如上面的简单,只需要理解就行;下面的这个方法相对基础一些!
只知道特征值是没法求出A的,如果还知道特征向量就可以求出A来.