an²=s2n-1,bn=1 an*an 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:41:06
等差数列A1=1,前 n项和满足S2n/Sn=4n+2/n+1 设Bn=(An)p^(An),求前n项和

因为S2n=2n(a1+a2n)/2=n[2a1+(2n-1)d],Sn=n(a1+an)/2=n[2a1+(n-1)d]/2又S2n/Sn=4n+2/n+1,所以[2+(2n-1)d]/[2+(n-

给定数列an={a1,a2,a3.an},bn=a(n+1)-an

∵二阶差数列为an={0,1,3,6...}∴a2-a1=1a3-a2=2a4-a3=3……an-(an-1)=n-1将上式相加得an-a1=1+2+3+……n-1=n*(n-1)/2an=n*(n-

已知数列an是各项均不为0的等差数列,Sn为其前n项和,且满足S2n-1=1/2an^2,数列bn满足,当n为奇数时bn

(1)、S2n-1=1/2an^2和an是各项均不为0的等差数列得S1=1/2a1^2=a1a1=2S3=1/2a2^2=3a2a2=6所以an=4n-2n为偶数时bn=1/2an-1=2n-3(2)

等差数列an中,a1=1前n项和Sn,满足条件S2n/Sn=4n+2/n+1,求an通项 记Bn=anp^an(p>0)

1)因为Sn=na1+n(n-1)d/2=n+n(n-1)d/2,S2n=2n+2n(2n-1)d/2,S(2n)/Sn=(4n+2)/(n+1),所以d=1,所以Sn=n+n(n-1)/22)an=

数学数列题、急数学题 在数列{An}.{Bn}中已知A(n+1)=2An+K Bn=A(n+1)-An求证{Bn}为等比

A(n+1)=2An+KA(n)=2A(n-1)+KA(n+1)-An=2[An-A(n-1)]Bn=A(n+1)-AnBn-1=An-A(n-1)Bn=2B(n-1){Bn}为等比数列

1 在等比数列{an}中,已知Sn=48,S2n=60,求S3n

(1)Sn=48=a1+a2+……+an=48S2n=a1+a2+……an+a(n+1)+……a(2n)=60Sn+Sn*q^n=S2nq^n=1/4S3n=a1+……a(3n)=S2n+a(2n+1

1、等比数列{an}中,已知Sn=48,S2n=60,求S3n?

①依题意知sns2n-sns3n-s2n成等比数列设s3n=x那么有48*(x-60)=(60-x)^2解出x即可②在原式两边同时减去2得an-1=2a(n-1)-2即an-1/[a(n-1)-1]=

已知数列an是等差数列,且bn=an+a(n+1).求证数列bn是等差数列.

设an公差为d那么通过等差数列定义,只要bn-b(n-1)是常数bn-b(n-1)=an+a(n+1)-[a(n-1)+an]=a(n+1)-a(n-1)=2d所以bn是等差数列.

a1=2a an+1=〈(an)ˇ2+aˇ2〉/2an bn=(an+a)/(an-a) a≠0 求证bn+1=bnˇ2

n=(an+a)/(an-a)∴bn+1=(an+1+a)/(an+1-a)an+1+a=[(an)ˇ2+aˇ2]/2an+a=[(an)ˇ2+aˇ2+2an·a]/2an=(an+a)ˇ2/2ana

数列{an}和{bn}中,a1=1,a2=2,an>0,bn=根号(an*a(n+1))(n为正整数),且{bn}是以q

(1)∵数列{a[n]}和{b[n]}满足a[1]=1,a[2]=2,a[n]>0,bn=√(a[n]*a[n+1]),且{b[n]}是以公比为q的等比数列∴b[1]=√(a[1]*a[2])=√2b

数列{an}、{bn}的每一项都是正数,a1=8,b1=16,且an,bn,a(n+1)成等差,bn,a(n+1),b(

首先证明√bn成等差数列an,bn,a(n+1),成等差所以,2bn=an+a(n+1)推出,2b(n+1)=a(n+1)+a(n+2)bn,a(n+1),b(n+1),成等比所以,a(n+1)^2=

已知数列{an}是等差数列,且bn=an+a(n-1),求证bn也是等差数列

设an=a1+(n-1)d,bn=an+a(n-1)=a1+(n-1)d+a1+nd=2a1+(2n-1)dbn为首项为2a1-d,公差为2d的等差数列

已知数列{an},如果数列{bn}满足b1=a1,bn=an+a(n-1)则称数列{bn}是数列{an}的生成数列

d(n)=2^n+n,p(1)=d(1)=2^1+1=3,p(n+1)=d(n+1)+d(n)=2^(n+1)+(n+1)+2^n+n=3*2^n+2n+1,L(2n-1)=d(2n-1)=2^(2n

等差数列{an}中,a1=1,前n项和Sn满足条件S2n/Sn=4,n=1,2.,记bn=an*2^(n-1),求数列{

S2/S1=(a1+a2)/a1=4,a1=1所以a2=3公差d=a2-a1=2an=a1+(n-1)d=2n-1所以bn=(2n-1)*2^(n-1)设bn的前n项和是Tn则Tn=1*2^0+3*2

高二数列练习题 数列{an}中,a1=4,an=4-4/a(n-1),数列{bn},bn=1/an-2,求:(1){bn

n-b(n-1)=1/(2-4/(an-1))-1/(a(n-1)-2)=a(n-1)/(2a(n-1)-4)-2/(2a(n-1)-4)=(a(n-1)-2)/(2a(n-1)-4)=1/2,所以数

已知数列an,bn,cn满足[a(n+1)-an][b(n+1)-bn]=cn

(1)a(n+1)-an=(n+1+2013)-(n+2013)=1∴b(n+1)-bn=cn/[a(n+1)-an]=cn=2^n+n∴bn-b(n-1)=2^(n-1)+n-1...b2-b1=2

已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2.求{bn}通项公式

a(n+1)+b(n+1)=1,b(n+1)=(1-an)/(1-an²)=1/(1+an),a(n+1)+1/(1+an)=1,a(n+1)an+a(n+1)+1=1+an,a(n+1)a

已知数列{An}是等差数列,且Bn=An+A(n+1).求证数列{Bn}是等差数列

B(n+1)-Bn=A(n+1)+A(n+2)-An-A(n+1)=A(n+2)-An因为An是等差数列,所以A(n+2)-An=2d是一个与n无关的常数,所以Bn是等差数列

等差数列{an},a1=1,前n项和Sn,S2n/Sn=4

S2n=2n+n*(2n-1)dSn=n+n(n-1)d/24Sn=4n+2(n^2-n)dS2n/Sn=4S2n=4Sn4n+2d(n^2-n)=2n+(2n^2-n)d整理,得dn=2nd=2S2