提出问题,如图1,在正方形ABCD中,点p.f分别在边BC.AB上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:39:13
(1)将三角形补成一个矩形S△ABC=S矩形BEFG-S△BEC-S△CFA-S△AGB &n
这是已知三边求面积,用海伦公式:设s=(a+b+c),S=根号下[s*(s-a)(s-b)(s-c)].画图更简单了:CA最长,所以以CA为底先画出来;20=4的平方+2的平方5=1+2的平方所以以2
1.2.3.都正确1.作ER⊥CD于R,MS⊥BC于S易证Rt△EFR≌Rt△MGS∴EF=MG2.AE=√3EM=2FM=2MG=4∴FG=2√53.当E在A点时,P为正方形中心当E运动到B点时,P
解题思路:本题主要考查了勾股定理,利用勾股定理构建直角三角形即可解答。解题过程:
BD=msinα或BD≥m.见图1、图2;使△ABD唯一确定,就是使满足条件的三角形全等,根据三角形全等的判定定理,若两个三角形有一个角和夹这个角的一边对应相等,只要再加上另外的一个边对应相等,即可利
(1)所作图形如图所示:(2)∵AB=22+32=13,为无理数,∴AB为腰,则只需作一条长为13的腰和长为4的底,如图所示.
(1)证明:∵∠ADC=∠PDQ=90°,∴∠ADP=∠CDQ.在△ADP与△CDQ中,∠DAP=∠DCQ=90°AD=CD∠ADP=∠CDQ∴△ADP≌△CDQ(ASA),∴DP=DQ.(2)猜测:
(1)证明:∵∠ADC=∠PDQ=90°,∴∠ADP=∠CDQ.在△ADP与△CDQ中,∠DAP=∠DCQ=90°AD=CD∠ADP=∠CDQ∴△ADP≌△CDQ(ASA),∴DP=DQ.(2)猜测:
1.a(a+b)-b(a-b)-1/2a*a-1/2b(a+b)=1/2a*a+1/2b*b-1/2ab2.把a=5,b=3代入上式中,得出阴影的面积为9.5平方厘米
①延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),∴CF=BG,DF=DG,∵DE⊥DF,∴EF=EG.在△BEG中,BE+BG>EG,即BE
(1)∵在△ADC和△EDB中AD=DE∠ADC=∠BDEBD=CD,∴△ADC≌△EDB(SAS),故选B;(2)∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,A
解∶由题意可知ΔADE与ΔDFE和ΔBFC都是直角三角形,且AB=BC=CD=AD=4,AE=DE=2,DF=1,∴CF=DC-DF=3∵在RtΔABE中BE²=AB²+AE
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
用面积法S(正方形)=9S(△ABC)=S(正方形)-S(△ABC外三个三角形)=9-[(3*2)/2+(3*2)/2+(1*1)/2]=5/2又S(△ABC)=(AB*CD)/2由勾股定理AB=√(
(1)∵四边形ABCD为正方形,∴∠ABC=∠DCB=90°,AB=CD,∵BP=PC,∴∠PBC=∠PCB,∴∠ABP=∠DCP,又∵AB=CD,BP=CP,∴△ABP≌△DCP(SAS).(2)设
∵ΔADE与ΔDFE和ΔBFC都是直角三角形,AB=BC=CD=AD=4,AE=DE=2,DF=1,∴CF=3∵RtΔABE中BE²=AB²+AE²=20同理∶EF&su
既然是正三角形,则角A=角B=60度N'E'是正方形的边长,所以在三角形AE'N'中,AE'=√3/3N'E再问:请问是定理还是?如果不是,需要过程,中间的一步,关键的∠AN'E'=30°,30°所对
目测三角法,现行送上(O为CE,BF交点)修正完整版再问:这个题是初二初三的题,有没有容易理解的解法?比如说图形法,反证法等,谢谢再答:当然有,只是习惯了用计算,懒得添辅助线延长BF交AB于H可以证明