根号xydy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:37:37
(x∧2+y∧2)dx-xydy=0求通解

(x^2+y^2)dx-xydy=0dy/dx=(x²+y²)/(xy)dy/dx=((x/y)²+1)/(x/y)令u=y/x则dy=du*x+dx*udy/dx=(d

(x^2+y^2)dx+2xydy=0怎么求通解!

你未学过导数?d(x^3/3)/dx=1/3*3x^2=x^2相反就是积分过程d(xy^2)/dx=y^2*dx/dx+x*d(y^2)/dx=y^2+2xy*dy/dx=y^2dx+2xydy

求解数学题xydy/dx=y2+x2,y(1)求解微分方程

若题目为xydy/dx=y^2+x^2,则:dy/dx=x/y+y/x令y/x=u,则:y=xu,dy/dx=u+xdu/dx=x/y+y/x=u+1/uu+xdu/dx=u+1/uxdu/dx=1/

齐次方程.y^2+x^2dy/dx=xydy

u+xu'=u^2/(u-1)移向先xu'=u^2/(u-1)-u通分xu'=u^2/(u-1)-u(u-1)/(u-1)=(u^2-u^2+u)/(u-1)=u/(u-1)

求(x^2+y^2)dx-xydy=0微分方程的通解或特解

这是一阶齐次微分方程(x^2+y^2)dx-xydy=0dy/dx=(x²+y²)/(xy)dy/dx=((x/y)²+1)/(x/y)令u=y/x则dy=du*x+dx

求微分方程(x2+y2)dx=xydy的通解

令:u=y/x则:y=xudy/dx=u+xdu/dx由:(x^2+y^2)dx=xydydy/dx=(x^2+y^2)/xy=x/y+1/[x/y]dy/dx=u+xdu/dx=u+1/uxdu/d

如何解这样的微分方程2xydy=(2*y^2-x)dx?

(x-2y^2)dx+2xydy=0M=x-2y^2N=2xyM_y=-4yN_x=2y(M_y-N_x)/N=-6y/2xy=-3/x假设有关于x的积分因子u(Mu)_y=(Nu)_xM_y*u=N

求微分方程xydy+(y^2+1)dx=0的通解

方程是可分离变量的ydy/(y²+1)=-dx/x两边积分得:∫y/(y²+1)dy=-∫1/xdx得:(1/2)∫1/(y²+1)d(y²)=-ln|x|ln

微分方程(x+y^2)dx-xydy=0

设u=y/xdy/dx=(x+y²)/xyu+xdu/dx=1/xu+uudu=1/x²dx1/2u²=-1/x+Cy²=2Cx²-2x希望能帮道楼主

求方程y^2+x^2dy/dx=xydy/dx的通解

整理有dy/dx=y^2/(xy-x^2)=(y/x)^2/[(y/x)-1]令y/x=u,y=ux,y'=u+xu'则原微分方程可化为u+xu'=u^2/(u-1)xu'=u/(u-1)(u-1)/

微分方程(x的平方+2xy)dx+xydy=0的通解

(x+2y)dx+ydy=0,设y=tx,则dy=xdt+tdx,化为dx/x=-tdt/(t+1)^2=[-1/(t+1)+1/(t+1)^2]dt,lnx+c'=-ln(t+1)-1/(t+1),

求微分方程(x^2+2xy)dx+xydy=0的通解?

dy/dx=-(x^2+2xy)/(xy)=-(x+2y)/y=-x/y-2令u=y/x,则y=xu,y'=u+xu'代入原方程:u+xu'=-1/u-2xu'=-1/u-2-u=-(u+1)^2/u

( x^2+y^2)dx=2xydy判断此微分方程的类型

应该是可分离变量的吧两端同除以x^2得(1+(y/x)^2)dx=2y/xdy令y/x=uy=uxy'=u'x+u上式变为(1+u^2)=2u(u'x+u)整 理1+u^2=2u^2+2uu'x1-u

求解齐次微分方程:(x^2+y^2)dx=xydy

方程变形为dy/dx=x/y+y/x.令u=y/x,则y=xu,dy/dx=u++x*du/dx,所以原方程化为u+x*du/dx=u+1/u.所以udu=dx/x.两边积分1/2*u^2=lnx+l

求解常微分方程(x^2+y^2)dx-2xydy=0的通解.

由(x^2+y^2)dx-2xydy=0得到dy/dx=(x^2+y^2)/2xy=0.5(x/y+y/x)设y/x=z,则y=zxdy/dx=xdz/dx+z=0.5(1/z+z)化为zdz/(1-

求齐次方程的通解.y²+x²dy/dx=xydy/dx 请写下步骤.

y²+x²dy/dx=xydy/dxy'=y²/(xy-x²)x'=(x/y)-(x/y)²令x/y=u,x=yux'=u+yu'u+yu'=u-u&

微分方程(x^2+y^2)dx+2xydy=0的隐式通解是?

设P(x,y)=x^2+y^2,Q(x,y)=2xy,则αP/αy=αQ/αx,所以此微分方程是全微分方程(x^2+y^2)dx+2xydy=0x^2dx+(y^2dx+2xydy)=0d(x^3/3

解微分方程:(e^x+3y^2)dx+2xydy=0

原式两边乘以x^2得x^2e^xdx+3x^2y^2dx+2x^3ydy=0x^2e^xdx+dx^3y^2=0x^2e^xdx=-dx^3y^2两边积分得∫x^2e^xdx=-∫dx^3y^2x^2