求抛物线y2=2p×(p>0)上各点与焦点连线中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:00:23
由直线l过抛物线的焦点F(p2,0),得直线l的方程为x+y=p2.由x+y=p2y2=2px消去,得y2+2py-p2=0.由题意得△=(2p)2+4p2>0,y1+y2=−2p,y1y2=−p2.
(1)∵抛物线的方程为y2=2px(p>0),∴当p=4时,y2=8x,代入y=2,解得x=12.则由抛物线定义知:该点到焦点F的距离即为其到准线x=-2的距离,∴该抛物线上纵坐标为2的点到其焦点F的
直线方程为y=x+p/2与抛物线方程联立.AB=8=(根号2)X(Y1-Y2)用韦达定理,得P=2
设P点坐标(y2/2,y)用点到直线距离公式,代入,化简为二次函数形式,配方得4分之根号2乘以绝对值里(y-1)平方加3,所以当y=1时距离最小为4分之5倍的根号2.把y=1代入抛物线方程,x=1/2
依题意可知a2+b2=p249a2p2-4b2p2=1,两式相减求得8b2=5a2,∴ba=58=104∴双曲线的渐近线方程为y=±bax=±104x故答案为:y=±104x
32联立y=k(x-4)y^2=4x=k^2*(x^2-8x+16)得x1+x2=8+4/(k^2)y1^2+y2^2=4(x1+x2)大于32或斜率不存在,得32
证明:∵y²=x²(两方程联立,用2p代x)∴y=±x∴交点坐标:A(2p,2p);B(2p,-2p)∴koa=ya/xa=2p/2p=1kob=yb/xb=-2p/2p=-1∵k
设抛物线y²=2px(p>0)上一点(4,t)到焦点的距离为5.(1),求p和t;(2),若直线y=2x+b被抛物线截得的弦长为3√5,求b;(3),求抛物线上的动点M到定点A(m,0)的最
焦点F(p/2,0)设弦所在直线斜率为k,方程为y=k(x-p/2),x=y/k+p/2y²=2p(y/k+p/2)=2py/k+p²ky²-2py-kp²=0
解设l:y=k(x-p/2)弦与抛物线交点为A(x1,y1)B(x2,y2)连列直线与抛物线方程组求出x1+x2=k2p+2p/k2@又因为弦长AB=x1+x2+p=5/2p*将@代入*即可求出k=2
y^2=2px(P>0)的焦点F(p/2,0)等边三角形的一个顶点位于抛物线y2=2px(P>0)的焦点,另外两个顶点在抛物线上,则等边三角形关于x轴轴对称两个边的斜率k=±tan30°=±根号3/3
等边三角形的一个顶点位于抛物线y2=2px(p>0)的焦点F(p/2,0),两个顶点在抛物线上,设为A(2pt^2,pt),则|pt/(2pt^2-p/2)|=|t/(2t^2-1/2)|=1/√3,
最小值为1,说明与直线3x+4y+12=0斜率相等并切抛物线y2=2px(p>0)的直线(b)与直线3x+4y+12=0平行且间距为1.根据作图可知所求直线(b)在直线3x+4y+12=0上方.所以得
即4=2pp=2所以y2=4xp/2=1所以准线是x=-1
已知一条直角边的方程为y=2x,且直角顶点在原点则另一条直角边的方程为y=-1/2x,设交于A(x1,y1)、B(x2,y2)两点联立y²=2px1y=2x1y²=2px2y=-1
点M到焦点的距离为6则M到准线的距离也是6准线是x=4-6=-2=-p/2p=4抛物线方程是y^2=8xx=4时y=±4√2所以m=±4√2
根据抛物线方程可知准线方程为x=-p2,且32=2pm,⇒m=92p∵M点到抛物线焦点的距离为5,根据抛物线的定义可知其到准线的距离为5,∴92p+p2=5,即p2-10p+9=0,解得:p=1或p=
设点N的坐标为(x',y'),则y’²=2px’.|MN|=√[(x'-a)²+y'²]=√[(x-a)²+2px']=√[x'²+(2p-2a)x’
易得p=2再问:过程。答案我也懂再答:根据焦点弦长公式:2ep/(1-e^2cos^2θ)=弦长(抛物线的e为1,此p为准焦距,即准线到焦点的距离,不是题中的p)解得此p=2,,就得到题中所求p也为2