fx 在(a,b)上连续 可导,fa=fb=0 证明存在

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:03:42
若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.

(1)令g(x)=f(x)-x在区间(a,b)内连续g(a)=b-a>0g(b)=a-

高数罗尔定理之类的大致就是f(x)在(a,b)上连续可导b>a>0,f(a)=f(b),证明,存在c属于(a,b),使f

这类题目怎么能大致呢?错一点条件就证不出来了.本题缺条件,应该是f(a)=f(b)=0设g(x)=f(x)/x,在[a,b]连续,在(a,b)可导g(a)=f(a)/a=0,g(b)=f(b)/b=0

设函数f(x)在[a,b]上连续,(a,b)可导,且f(a)=0,证明至少存在一点ξ∈(a

这一类型的题目通常要构造一个新函数,然后利用微分中值定理做的.设F(x)=(X-b)*f(x)由已知可知F(X)在区间【a b】可导且连续再   F(a)=0&

设f(x)在(a,b)内连续可导f'(x)

再问:为什么f(x)-f(t)

设f(x)在区间[a,b]连续,在(a,b)可导,那么f(x)的导数在区间(a,b)上的导数是否连续?怎么证明?或反例?

如果函数f(x)在开区间(a,b)上可导,那么导函数f'(x)在该区间上未必连续f(x)=x^2sin(1/x)x≠00x=0f'(0)=0f'(x)=2xsin(1/x)-cos(1/x)再问:真不

若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)可导,如果在(a,b)内f'(x)>0,则f(x)在[a,b]

不成立!举个例子x^3这个函数单调递增,但是在x=0时导数为0而不是大于0

证明 若f(x)在有限区间内一致连续,则可补充f(a)和f(b),使得f(x)在[a,b]上连续

利用函数的柯西定理可以证明f(x)在x=a及x=b处分别存在右极限f(a+)和左极限f(b-),令f(a)=f(a+),f(b)=f(b-)便有f(x)在[a,b]上连续

证明:有f(x+y)=fx+fy且fx在0处连续,则函数fx在R上连续,且fx=ax,其中a=f(1)

亲,百度一下柯西函数方程吧.过程过于复杂的

Fx在(0,2a)在连续 F0=F2a,证明在(0,a)上至少存在一点B使是FB=F(B+a)

构造函数g(x)=f(x+a)-f(x),且在区间[0,a]上是连续的.因为:g(0)=f(a)-f(0)g(a)=f(2a)-f(a),由f(2a)=f(0)可知g(0)乘g(a)=

设函数f(x)在[a,b]上连续,在(a,b)可导,且f(a)*f(b)>0,f(a)*f((a+b)/2)

设F(x)=e^(-kx)f(x)由f(a)*f(b)>0,f(a)*f((a+b)/2)0F(a)*F((a+b)/2)0F(b)>0F((a+b)/2)再问:我想问一下,F(x)=e^(-kx)f

设f(x)在区间[a,b]上连续,在(a,b)可导,

/>构造辅助函数:F(x)=xf(x),则:F(x)在[a,b]连续,在(a,b)可导,从而F(x)满足拉格朗日中值定理,则:在(a,b)内至少存在一点ξ,使得:F(b)-F(a)b-a=F′(ξ),

f(x)在[a,b]上连续可导,f'(x)≤0 若F(x)=1/x-a,定积分∫f(t)dt[a,x] 证明在(a,b)

F(x)=[∫[a->x]f(t)dt]/(x-a)=>F'(x)=[f(x)(x-a)-∫[a->x]f(t)dt]/(x-a)²∴只需证明f(x)(x-a)-∫[a->x]f(t)dt≤

设f(x)在[a,b]上连续,在(a,b)可导,且f(a)=f(b)=0,证明存在c属于(a,b),使f'(c)+f(c

令g(x)=f(x)+f³(x)/3,则g(a)=g(b)=0由中值定理存在c∈(a,b)使得g'(c)=0而g'(x)=f'(x)+f²(x)即f'(c)+f²(c)=

函数f,g在[a,b]连续,(a,b)可导,f(a)=f(b)=0,证明存在c∈(a,b)使得f'(

考虑h(x)=f(x)e^(g(x)),有h(x)在[a,b]连续,(a,b)可导,且h(a)=h(b)=0.由罗尔中值定理,存在c∈(a,b)使h'(c)=0.而h'(c)=(f'(c)+f(c)g

f(x)在(a,b)可导的话是不是意味着导函数在(a,b)上连续呢?

函数在负无穷到正无穷上可导,其导函数不一定连续.例子就是y=x^2*sin(1/x),x0y=0,x=0这个函数处处可导,但导函数不连续.有一个结论,导函数的间断点一定是第二类的.

设f(x)在[a,b]上连续,在(a,b)内f(x)可导且f(x)≠0,f(b)=f(a)=0.试证对任意的实数α,存在

令F(x)=e^(kx)f(x),在[a,b]上用罗尔定理可以证出f'(§)+kf(§)=0.原题就是这样的?