fx 在(a,b)上连续 可导,fa=fb=0 证明存在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:03:42
(1)令g(x)=f(x)-x在区间(a,b)内连续g(a)=b-a>0g(b)=a-
这类题目怎么能大致呢?错一点条件就证不出来了.本题缺条件,应该是f(a)=f(b)=0设g(x)=f(x)/x,在[a,b]连续,在(a,b)可导g(a)=f(a)/a=0,g(b)=f(b)/b=0
这一类型的题目通常要构造一个新函数,然后利用微分中值定理做的.设F(x)=(X-b)*f(x)由已知可知F(X)在区间【a b】可导且连续再 F(a)=0&
答案是B:A,C,D的反例:f(x)=|x|,-1
再问:为什么f(x)-f(t)
如果函数f(x)在开区间(a,b)上可导,那么导函数f'(x)在该区间上未必连续f(x)=x^2sin(1/x)x≠00x=0f'(0)=0f'(x)=2xsin(1/x)-cos(1/x)再问:真不
不成立!举个例子x^3这个函数单调递增,但是在x=0时导数为0而不是大于0
利用函数的柯西定理可以证明f(x)在x=a及x=b处分别存在右极限f(a+)和左极限f(b-),令f(a)=f(a+),f(b)=f(b-)便有f(x)在[a,b]上连续
亲,百度一下柯西函数方程吧.过程过于复杂的
构造函数g(x)=f(x+a)-f(x),且在区间[0,a]上是连续的.因为:g(0)=f(a)-f(0)g(a)=f(2a)-f(a),由f(2a)=f(0)可知g(0)乘g(a)=
设F(x)=e^(-kx)f(x)由f(a)*f(b)>0,f(a)*f((a+b)/2)0F(a)*F((a+b)/2)0F(b)>0F((a+b)/2)再问:我想问一下,F(x)=e^(-kx)f
/>构造辅助函数:F(x)=xf(x),则:F(x)在[a,b]连续,在(a,b)可导,从而F(x)满足拉格朗日中值定理,则:在(a,b)内至少存在一点ξ,使得:F(b)-F(a)b-a=F′(ξ),
F(x)=[∫[a->x]f(t)dt]/(x-a)=>F'(x)=[f(x)(x-a)-∫[a->x]f(t)dt]/(x-a)²∴只需证明f(x)(x-a)-∫[a->x]f(t)dt≤
令g(x)=f(x)+f³(x)/3,则g(a)=g(b)=0由中值定理存在c∈(a,b)使得g'(c)=0而g'(x)=f'(x)+f²(x)即f'(c)+f²(c)=
考虑h(x)=f(x)e^(g(x)),有h(x)在[a,b]连续,(a,b)可导,且h(a)=h(b)=0.由罗尔中值定理,存在c∈(a,b)使h'(c)=0.而h'(c)=(f'(c)+f(c)g
设g(x)=xF(x)用拉格朗日中直定理
函数在负无穷到正无穷上可导,其导函数不一定连续.例子就是y=x^2*sin(1/x),x0y=0,x=0这个函数处处可导,但导函数不连续.有一个结论,导函数的间断点一定是第二类的.
令F(x)=e^(kx)f(x),在[a,b]上用罗尔定理可以证出f'(§)+kf(§)=0.原题就是这样的?