结果等于4的对称矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/04 13:15:48
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对

设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵

正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立

证明:秩等于r的对称矩阵可以表成r个秩等于1的对称矩阵之和

提示一下,化成合同标准型即可再问:能不能说详细点再答:A=C*D*C^T假如D只有一个对角元非零,那么C*D*C^T是秩1矩阵这里D有r个非零的对角元,那么拆成r个只含一个非零元的矩阵之和即可

对称矩阵a为正定矩阵,可以直接说a为实对称矩阵吗?对称矩阵,正定矩阵,实对称矩阵之间的关系是什么呢?

线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T

实对称矩阵的逆的转置矩阵等于它的逆矩阵吗

等于,因为他的逆也是对称矩阵注意到转置和逆是可交换的,也就是(A^-1)^T=(A^T)^(-1)因为A是对称的,故(A^-1)^T=A^(-1)得证.

证明:秩等于r的对称矩阵可以表示成r个秩等于1的对称阵之和

对称矩阵都可以正交相似对角化,即存在正交矩阵O使得A=O'*diag{a1,a2,...,an}*O.rk(A)=r说明对角元a1,a2,...,an中有r个非零,不妨设为前r个,则A=O'*diag

对称矩阵,正定矩阵,共轭矩阵的判定条件是什么?

对称矩阵的根据定义判定.A'=A正定矩阵的判定方法有多种,常用的有:1.各介顺序主子式均大于零2.所有的秩都大于0.共轭矩阵的判定根据定义.已经很详细了~建议你到网络上去找一找课件看看.

实对称矩阵A的非零特征值的个数等于它的秩对吗?

对的此时A可对角化,其秩等于由特征值构成的对角矩阵的秩

证明实对称矩阵行列式的值等于其特征根的乘积?

不必加条件"实对称矩阵"A的特征多项式|A-λE|=(λ1-λ)(λ2-λ).(λn-λ)λ=0时有|A|=λ1λ2...λn即A的行列式等于其全部特征值之积(重根按重数计)

一道线性代数的证明题证明:秩为r的对称矩阵可以表示成r个秩等于1的对称矩阵之和.谢谢!

对称矩阵?就当元素都是实数了那么是对称矩阵可以对角化,即A=H∧H'=H∧1H'+H∧2H'+H∧3H'+.H∧kH'+.H∧NH'其中∧k是k行k列为特征值λk的秩等于1的对称矩阵

为什么这个实对称矩阵的秩小于阶数可以推得 矩阵的行列式等于0?

关于这个我建议你应该仔细看一下矩阵秩的定义,对于3阶实对称矩阵来说,矩阵秩表示它至少有一个2阶子矩阵的行列式为0,而3阶子矩阵即矩阵本身的行列式为0再问:一下子忽略了定义。

设一个对称矩阵有可逆矩阵,证明它的逆矩阵也是对称矩阵

证:设A是可逆的对称矩阵,则A'=A.(对称的充要条件)所以(A^(-1))'=(A')^(-1)=A^(-1).(性质:逆的转置等于转置的逆)所以A^(-1)是对称矩阵.(对称的充要条件)

可以认为对称矩阵的奇异值等于特征值的绝对值吗?如何证明,

实对称矩阵可以这么认为,复数域下不行.实数域下要证明太简单了,A如果是实对阵矩阵,那么它的共轭转置还是A,A乘以A的共轭转置等于A平方,假如A的特征值为λi,A平方的特征值等于λi^2,实数域下λi^

4、给定程序中,函数fun的功能是:有N×N矩阵,以主对角线为对称线,对称元素相加并将结果存放在左下三角元

7.给定程序中,函数fun的功能是:有N×N矩阵,以主对角线为对称线,对称{inti,j;for(i=0;i

为什么实对称矩阵的几何重数必等于代数重数

因为它可以对角化再答:而且对角化等价于几何重数等于代数重数再问:为什么可以对角化再答:这是一个基本定理,可以看二次型那里。用归纳法证明的

若:A为实对称矩阵 证明:A的秩等于A平方的秩

设Ax=0左乘A^T(就是A的转置)得到(A^T)Ax=0就是说Ax=0的解一定是(A^T)Ax=0的解同理对方程(A^T)Ax=0左乘x^T得到(Ax)^T(Ax)=0因为Ax是个列向量,(Ax)^

对称正定矩阵的特征值问题4

对于非对称矩阵A,其特征值可能出现虚数,但不论如何总有μ_min再问:也就是说此时对应的特征向量也有可能是复数域的了?另外,要是只在实数域内求特征值,会出现什么结果啊?再答:一般来讲特征值和特征向量当

线性代数:4、实对称矩阵的对角化问题.

|A-λE|2-λ-11-12-λ-11-12-λc1-c31-λ-1102-λ-1λ-1-12-λr3+r11-λ-1102-λ-10-23-λ=(1-λ)[(2-λ)(3-λ)-2]=(1-λ)(