若上(下)三角矩阵可逆,则主对角线上元素之积不等于零.

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/18 04:21:26
任一可逆矩阵可分解为一正交阵和上三角阵的乘积

这个是矩阵的QR分解你自己找书吧一般的矩阵论上就有下面给一个简单的证明:(施密特标准正交化过程)A的n个列向量线性无关(设n个列为A1,A2...An),所以可以在Rn中找到一个标准正交基,α1,α2

2:写一程序,求一矩阵的主对角(左上角到右下角)上的元素和,上三角之和,下三角之和,然后形成单位矩阵

最后一段代码差了一对 {}代码修改后如下如下:#include<stdio.h>int main(){ int i,j,a[4][4],m=1,n=

上三角矩阵和下三角有何区别

在运用中.三角形式可以直接提供相当多的信息.比如对角线上的元素一定是其特征值.(schur引理)再者,非零元素越少,可以尽可能的降低计算的复杂度.

若A是三角型矩阵,若主对角线上元素(),则A可逆

若A是三角型矩阵,若主对角线上元素(全不为0),则A可逆

定义一个N*N的矩阵,输出其对角线元素、上三角矩阵和下三角矩阵; 要考试 急

要用什么实现matlab有函数diagA=rand(3,3);B=diag(A);C=tril(A);D=triu(A)

如果矩阵A可逆,则A可对角化.对不对

对的人家说不对的原因是:矩阵A存在相似对角阵的充要条件是:如果A是n阶方阵,它必须有n个线性无关的特征向量.至于如何看A是否存在相似矩阵,只须求出其特征值和特征向量即可看出,公式为AX=λX,其中X为

证明可逆矩阵可以分解成分解成一个酉矩阵和一个实上三角矩阵

对于一般的可逆复矩阵来讲这个要求是做不到的,在QR分解当中只能要求上三角矩阵的对角元是实的(可以是正的),但不能要求整个上三角阵都是实的,因为QR分解本质上是唯一的.比如说1i2i3可逆,但不可能有满

证明:主对角线上的元素互不相同的上三角矩阵必可对角化

特征值都不相同,当然可以对角化再问:可是题上问我要过程。。。再答:上三角矩阵的主对角线上的元素就是全部特征值。再问:是啊我明你的意思可我总不能就写一句话在上面吧丶再答:你想写几句就写几句,不知道你们的

上三角矩阵或者下三角矩阵求逆矩阵时有简便方法吗?

除非是对角矩阵.否则没有化成上三角矩阵或者下三角矩阵就是让你求|A|的.

任何n阶矩阵是一组三角矩阵(包括上三角矩阵和下三角矩阵)的乘积

前提是你得知道矩阵通过一系列(有限步)行初等变换可以转化到阶梯型,而对于方阵而言阶梯型一定是上三角阵,所以只要证明那一系列行变换都是三角矩阵就行了.第二类初等变换是对角阵,第三类初等变换是三角矩阵,唯

上三角或下三角矩阵的逆矩阵能否简便方法求出?只有主副对角线不为0的矩阵能否直接写出逆矩阵

Q2:r1000r2000r3----主对角的逆:主对角元素取倒数,原位置不变副对角:00r10r20r300的逆:001/r301/r201/r100Q1上三和下三都需要分块以后有规律:AC0B的逆

上三角矩阵主对角线值即为其特征值吗?下三角矩阵呢?

设n阶上三角方阵A,其特征值为λ根据矩阵的特征值的计算公式有|A-λE|=0则有:|a11-λa12a13………………a1n||a22-λa23a24………a2n||a33-λ…………………a3n|=

设A为一个n阶可逆矩阵,证明A可分解成一个正交矩阵Q与一个主对角线元素为正数的上三角矩阵T的乘积.

把n阶矩阵A看成是n个列向量,然后用施密特正交法正交化后,就能得出来

为什么上三角矩阵和下三角矩阵的特征值就是矩阵对角线上的元素?

特征多项式f(a)=|aE-A|,f(a)=0的根即为特征值对于上(下)三角阵右边的行列式恰好是f(a)=(a-a11)(a-a22)...(a-ann)所以特征值自然就是对角线元素

若R(A)=r,则A=PR,R是上三角矩阵,主对角线上前r个元素为1,后n-r个元素为0,而P可逆,怎么证这题矩阵分

结论不成立.结论等价于QA=R,其中Q=P^(-1)反例:A=0001R(A)=1于是:上三角阵R为:R=1x00Q=abcd则QA=0b0d所以QA不可能等于R补充:我理解题目的意思是:任给A,如果

数据结构中什么叫下三角矩阵和上三角矩阵?

对角线下全是0就是上三角矩阵,对角线上全是0就是下三角矩阵.

证明.若A是主对角元全为零的上三角矩阵,则A^2也是主对角元全为零的上三角矩阵

定义证明,定义证明再问:不会,其实书上的例题证明我就没看明白再答:就是罗列每个矩阵的每个元素,然后按照矩阵乘法做运算,看下结果是否相符。

设A是实数域上n级可逆矩阵,证明:A可唯一分解成A=TB.其中T是正交阵,B是主对角元都为正的上三角矩阵.

考虑到R^n的任何一组基可以标准正交化即可得到存在性(考虑两组基的过渡阵).唯一性是显然的,证明如下:设T_1B_1=T_2B_2,则{T_2}^{-1}T_1=B_2{B_1}^{-1}.注意到1.

一个复矩阵A可逆,证其可分解为一个酋矩阵与上三角矩阵的乘积,并且该分解唯一

分解的存在性直接用Gram-Schmidt正交化过程证明即可但不可能保证分解唯一,如果A=QR,那么A=(-Q)(-R)一般来讲要一个额外的条件来保证唯一性,常用的条件是R的对角元为正实数,这样就和G

关于上(下)三角矩阵的数学定义

上三角矩阵定义:主对角线以下都是0.下三角矩阵:主对角线以上都是0.