设AB均为n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:36:09
A^(-1)=A^T|A^(-1)B^T|=|A^TB^T|=|(BA)^T|=|BA|=-1
都小于n有个结论:设A,B均为n阶非零矩阵,且AB=0,则R(A),R(B)满足R(A)+R(B)=1,r(B)>=0所以R(A),R(B都小于n
|AB|=|A||B|=|B||A|=|BA|
我想了好久没作出来!后来发现题目有误!比如取A=B且R(A)
证明:由AB=A+B得(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且E=(B-E)(A-E)=BA-B-A+E所以BA=A+B=AB.
A+B=AB,所以(A-I)(B-I)=I,说明A-I与B-I互为逆矩阵,设它们为X,Y,即A=I+X,B=I+Y,X与Y互逆,所以,AB=(I+X)(I+Y)=I+X+Y+XY=2I+X+Y,BA=
证明:因为A,B可逆,故A^-1,B^-1存在,AB可逆,且有A*=|A|A^-1,B*=|B|B^-1.故(AB)*=|AB|(AB)^-1=|A||B|B^-1A^-1=(|B|B^-1)(|A|
因为A*A=AA*=IAIE,所以A*=A^(-1)IAI.A^(-1)表示A的逆,IAI表示A的行列式.(AB)*=(AB)^(-1)IABI=B^(-1)A^(-1)IABI=B^(-1)IBIA
考察(AB+BA)^T(AB+BA)^T=(AB)^T+(BA)^T=(B^T)(A^T)+(A^T)(B^T)由于A,B均为n阶对称矩阵所以原式=BA+AB所以AB+BA也是对陈阵.
证明:必要性已知AB为对称阵转置(AB)'=B'A'又A'=AB'=B(AB)'=AB所以有AB=BA充分性已知AB=BA(AB)'=(BA)'=A'B'又A'=AB'=B所以(AB)'=ABAB为对
(1)若AB是对称矩阵,则(AB)T=AB,而(AB)T=BTAT=BA,故有BA=AB;反之,若BA=AB,则(AB)T=BTAT=BA=AB,即(AB)T=AB,AB为对称阵.(2)(A+AT)T
这个比较麻烦,要借助向量空间的维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3
不是这个稍等再问:额,不是这道题啊再答:这个要借助空间维数定理证明:记w1,w2,w3,w4分别为A,B,A+B,AB的行向量组生成的向量空间易知w3包含在w1+w2中.由维数定理dimw3
首先考虑联立线性方程组(1) AX=0, BX=0, 设其基础解析有n-r个向量.易见其解都是(A+B)X=0的解, 所以n-r≤n-r(A+B), 即r(A+B)≤r.将(1)的基础解系分别扩充为A
由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.
矩阵X=(xij)为n阶上三角形矩阵当且仅当当i>j时,矩阵的元素xij=0.设A=(aij),B=(bij)因为A,B均为n阶上三角形矩阵,故当i>j时,aij=0,bij=0令C=AB=(cij)
由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确
AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们