设A为n阶矩阵,并且满足AAT=En证明 如果
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:42:37
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
证明:|A+E|=|A+AA^T|=|A(E+A^T)|=|A||(E+A)^T|=|A||A+E|所以|A+E|(1-|A|)=0因为|A|
det(i+A)=det(AAt+A)=det[A(At+i)]=detAdet(At+i)=detAdet(A+i)=-det(i+A)所以,det(i+A)=0
因为AAT=E,所以A为正交矩阵,且|A|再问:直接把A提出来,|AB|=|A||B|
|I+A|=|(I+A)^T|=|I+A^T||A||I+A|=|A||I+A^T|=|A(I+A^T)|=|A+I|因为|A|=-1所以-|I+A|=|A+I|那么|I+A|=0
分三步:1.因为a为n维单位列向量,所以有a'a=1(记a'=aT)2.A'A=(E-2aa')(E-2aa')=E-4aa'+4aa'aa'=E-4aa'+4aa'=E3.||AB||=√(AB)'
A^2=求和符号(下面i=0,上面i=n)(akiail)AAT=求和符号(下面i=0,上面i=n)(akiali)ATA=求和符号(下面i=0,上面i=n)(aikail)再问:亲有过程么?答案我知
|A+E|=|A+AA'|=|A||E+A'|=|A||(E+A)'|=|A||E+A|,而|A|=-1,所以推出|A+E|=0
AA=A=>AA-AE=O=>A(A-E)=O=>|A|*|A-E|=0但A≠E,所以|A|=0
AATa=Aλa这不对再问:AAa=Aλa=λAa跟这个不一样么再答:A^T≠A再问:但是AT的特征值也是λ呀??再答:A与A^T的特征值尽管一样但它们的特征向量并不相同!
等式AA^T=I两边取行列式得|A||A^T|=|I|=1所以|A|^2=1所以|A|=1或|A|=-1
1证明:若矩阵A^2=I,A不等于I,则A+I不可逆.证明:首先因为A与A可乘(条件中由A^2),所以A是方阵(不妨设为n阶).因为A^2=I,所以(A+I)(A-I)=O,因为A≠I,所以A-I≠O
AB(AB)'=ABB'A'=AIA‘=I,(AB)'AB=B'A'AB=B'IB=I,因此原题得证
A²+3A-2E=0,所以A²+3A=2E,即A(A+3E)=2E,于是A(A/2+3E/2)=E,显然A为n阶方阵,而A和A/2+3E/2是同阶方阵,而两者相乘为E,所以由逆矩阵
只要证明|A+E|的行列式为0就可以了.|A+E|=|A+AA^T|=|A(E+A^T)|=|A||E+A^T|=-|(A+E)^T|=-|A+E|移一下项就得到2|A+E|=0,从而|A+E|=0,
(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x
因为A满足:A2=2A因此A的三个特征值为λ1=λ2=0,λ3=2由于三根之和等于A的对角线上的三个因素之和,从而aE-An的三个特征值为:a-λn,即a,a,a-2n,故有.aE-An.=a•a•(
题中少写一个加号,可按下图证明.经济数学团队帮你解答,请及时采纳.谢谢!
这里,先给说一个结论,很好证的就是如果x是阵C的特征值,那么E+C的特征值为1+xa≠0,可以知道aa'(a‘表示转置)也不会为0,而r(aa')