设D是由曲线,直线及x轴围成的平面区域,如图所示. 求D的面积A.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 02:42:27
矩形OABC内的阴影部分是由曲线f(x)=sinx,x属于(0,派)及直线x=a,a属于(0,派)与X轴围成,向OABC

由题意可得,是与面积有关的几何概率构成试验的全部区域是矩形OACB,面积为:a×6/a=6记“向矩形OABC内随机投掷一点,若落在阴影部分”为事件A,则构成事件A的区域即为阴影部分面积为∫0asinx

设二维随机变量xy在由x轴,y轴及直线2x+y=2所围成的三角形区域d上服从均匀分布,求

两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0

如题:设L是由曲线y^3=x^2与直线y=x连接起来的正向闭曲线,计算 (x^2)ydx+y^2dy的曲线积分(积分符号

设C是由曲线y³=x²与直线y=x连接起来的正向闭曲线,计算∮x²ydx+y²dy的曲线积分C:y=x^(2/3),y=x;区域D:由曲线C所围的区域;P=x&

求由曲线y=x^2,直线y=1及y轴围成的平面图形的面积

再问:X>=0再答:做的是x大于等于0

由曲线Y=e的x次方,直线x=0,x=2及x轴围成的图形的面积A

在x=0到x=2区间对Y=e的x次方积分A=e**2-e**0=e**2-1

设L是曲线y=x的平方+3在点(1,4)处的切线,求由该曲线,切线L及y轴围成的平面图形的面积S?(求大神帮助!急)

导数为2x,在1点值为2,L斜率为2.得到L的方程2x-y+2=0,与x轴交点为(1,0)作直线x=2,可算区边梯形面积减去三角形面积区边梯形积分上下限为0,2积分函数是y结果是17/3,三角形面积为

平面图形D由曲线y=e^x,直线y=e,及y轴围成,求平面D绕y轴旋转一周所形成的旋转体?如果用 dx 不是dy怎么求

dV=2πx(e-e^x)dx,x从0到1,计算得V=(e-2)π再问:dV=2πx(e-e^x)dx什么意思怎么来的再答:用元素法推导的,由此得到一个结论(教材上应该是有的):由曲线y=f(x),直

由直线x=1/2,x=2,曲线y=1/x及x轴围成图形的面积,用定积分的方法做

∫(1/2,2)1/xdx=ln2-ln(1/2)=2ln2再问:1/xdx是什么意思啊再答:1/x的积分

设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概

设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函

计算二重积分∫∫xydσ 其中D是由曲线y=x 2及直线x=1,y=0轴围成的闭区域

{y=x²、y=0{x=1∫∫xydxdy=∫[0→1]dx∫[0→x²]xydy=∫[0→1]x*[y²/2]:[0→x²]dx=∫[0→1]x/2*x

设i是曲线y=x²+3在点(1,4)处的切线,求由该曲线,切线l及y轴围成的平面图形的面积

y '=2x所以在点(1,4)切线的斜率k=y'=2×1=2故切线i 为y-4=2(x-1),得y=2x+2由y=2x+2和y=x²+3联立解得交点(1,

设D是由曲线y=lnx与其过原点的切线及x轴围成的区域,D绕x轴旋转一周所成旋转体的体积是?

是公式但是至于怎么推到出来的你把曲线化为空间曲线再三重积分就行至于积分怎么积没有普遍方法你这题用换元也可以不过我一般会用分步积分至于过程简单写下分步法:∫(lnx)^2dx=(lnx)^2*x-∫2l

设D是由抛物线Y=1-x^2和X轴,y轴及直线X=2所围成的区域的面积及D绕X轴旋转所得旋转体的体积

约定一下:用S代替积分号,本题的积分下限为0,上限为2体积=Sπ(1-x^2)^2dx=πS(1-2x^2+x^4)dx=π(x-2x^2/3+x^5/5)|(下:0,上:2)=π(2-8/3+32/

计算二重积分∫∫ydxdy,其中D是由直线x=-2,y=0,y=2及曲线x=-√根号(2y-y^2)所围成的区域.

化成二次积分计算.经济数学团队帮你解答.请及时评价.谢谢!

设平面区域D是由y=lnx,x轴,直线x=e所围.求D的面积及绕X轴旋转的体积V

所求面积=∫lnxdx=(xlnx)│-∫dx(应用分部积分法)=(e-0)-(x)│=e-(e-1)=1;所求体积=∫πln²xdx=π[(xln²x)│-∫2lnxdx](应用

设平面区域D由曲线y=1x

区域D的面积为:SD=∫e20dx∫1x0dy=∫e211xdx=lnx|e21=2,所以(X,Y)的联合概率密度为:f(x,y)=12  (x,y)∈D0