设三阶实对称矩阵A的特征值为=1,对应取的特征向量=(0,1,1),求A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:03:36
实对称矩阵对角化问题设A为3介实对称矩阵,可知存在正交阵P,使得P'-1AP=B,B为其特征值构成的对角矩阵,为什么求出

必须单位化!因为正交矩阵P是由A的特征向量构成的而矩阵P是正交矩阵的充分必要条件是它的列(行)向量组是标准正交向量组,即两两正交且长度为1.所以必须单位化.不对.单位化后得到的P才是正交矩阵.PS.用

实对称矩阵A=12 ,求矩阵A的特征值和特征向量 21

设矩阵A的特征值为λ那么|A-λE|=1-λ221-λ=(1-λ)²-4=λ²-2λ-3=0解得λ=3或-1当λ=3时,A-3E=-222-2第2行加上第1行,第1行除以-21-1

1、设-1是三阶实对称矩阵A的二重特征值,且A的迹tr(A)=4,那么A的逆的特征值为多少?

1.特征值分别记为a1,a2,a3,则tr(A)=a1+a2+a3=4,令a1=a2=-1,则a3=6所以A的特征值为-1,-1,6,所以A逆的特征值为1/a1,1/a2,1/a3,即-1,-1,1/

设三阶实对称矩阵A的特征值为-1,1,1.与特征值-1对应的特征向量X=(0,1,1),求

方程组为x2+x3=0x1,x2视为自由未知量,分别取1,0和0,1即得基础解系a2=(1,0,0)^T,a3=(0,1,-1)^T.(1,1,-1)^T是解(0,0,0)^T不行基础解系必须线性无关

特征值均为实数的正交矩阵为对称矩阵

要用到两个性质:性质1:正交阵A的特征值λ的模|λ|是等于1的.性质2:如果λ是A特征值,则λ²是A²的特征值.还要用到Jordan标准型的相关知识.就可以证明了.详细见参考资料.

实对称矩阵 特征值设A是3阶实对称矩阵 启特征值为1,1,-1,且对应的特征向量为a=(1,1,1)b=(2,2,1)求

给提供个解题思路吧:实对称矩阵不同特征值的特征向量相正交显然ab都是1的特征向量求-1的特征向量只要和ab都正交满足即可!把特征向量施密特正交可以得到矩阵PP的转置AP=【1,1,-1】那么A=P【1

矩阵A秩为三,为实对称矩阵 A^2+A=0.求特征值

A秩为3,则,x为A特征值对角矩阵diag(x1,x2,x3,0)A^2+A=0(A+E)A=0r(A+E)+R(A)《4r(A+E)《1即r(A+E)=1A化为对角矩阵diag(x1,x2,x3,0

设三阶实对称矩阵A的特征值为λ1=λ2=3,λ3=0 则A的秩 r(A)=

(A)=2.知识点:可对角化的矩阵的秩等于其非零特征值的个数

设三阶实对称矩阵A的特征值为1/2,1/2,1/3,则行列式|(0.5A^2)(-1)12A*—E|=

首先有|A|=(1/2)*(1/2)*(1/3)=1/12所以A*=|A|A^(-1)所以12A*=12*(1/12)A^(-1)=A^(-1)所以(0.5A^2)(-1)=(1/0.5)(A^2)^

求矩阵特征值三阶实对称矩阵A的秩为2,且A²+2A=0求三个特征值

利用对称性与秩计算.经济数学团队帮你解答.请及时评价.

线性代数:设三阶实对称矩阵A的秩为2,r1=r2=6是A的二重特征值.

秩是2,另一特征值是0.不同特征值的特征向量垂直,条件给了\alpha_1=(1,1,0),\alpha_2-\alpha_1=(1,0,1)是6的两个特征向量,所以(1,1,0)*(1,0,1)=(

实对称矩阵的特征值必为实数

证明:设λ是实对称矩阵A的特征值,α是A的属于特征值λ的特征向量即有A'=A,A共扼=A,Aα=λα,α≠0.考虑(α共扼)'Aα=(α共扼)'A'α=(Aα共扼)'α=((Aα)共扼)'α所以λ(α

设三阶实对称矩阵A的特征值为-1,1,1.与特征值-1对应的特征向量X=(-1,1,1),求A

由实对称矩阵的属于不同特征值的特征向量正交知特征值-1对应的特征向量a1=(-1,1,1)'与属于特征值为1的特征向量与X=(x1,x2,x3)'正交即有-x1+x2+x3=0.解得一个基础解系a2=

已知3阶实对称矩阵A每一行的和均为3,且其特征值均为正整数,|A|=3,求矩阵A

因为3阶实对称矩阵A每一行的和均为3所以3是A的一个特征值,(1,1,1)'是A的属于特征值3的特征向量又因为|A|=3是A的所有特征值的乘积而A的特征值均为正整数所以A的特征值为3,1,1.由实对称

已知3阶实对称矩阵A每一行的和均为3,且其特征值均为正整数,|A|=3,求矩阵A.

提示:3对应的特征向量是[1,1,1]',另外两个特征值都是1,特征向量与[1,1,1]'正交.

设3阶实对称矩阵A的特征值为-1,1,1,属于特征值-1的特征向量为a=[0 1 1]^t.

参考答案:1)实对称阵对应不同特征值的特征向量正交.不妨设A的属于特征值1的特征向量(a,b,c)则(0,1,1)(a,b,c)=b+c=0.得两个特征向量(1,1,-1),(1,-1,1).故A的属

设3阶对称矩阵A有特征值2,1,1,对应于2的特征向量为a1=(1;-2;2),求矩阵A

a1=(1;-2;2),.﹤a1﹥﹙a1生成的子空间﹚的正交补=<a2,a3>可取a2=﹙0,1,1﹚,a3=﹙4,1,-1﹚,a2,a3是对应于1的特征向量,设P=[a1′,a2′,a3']AP=P

设三阶实对称矩阵A的特征值为1,1,-1且对应的特征值1的特征向量有(1,1,1),(2,2,1),求矩阵A

因为对称矩阵的属于不同特征值的特征向量正交所以若设属于特征值-1的特征向量为(x1,x2,x3)^T则有x1+x2+x3=02x1+2x2+x3=0方程组的基础解系为ζ3=(1,-1,0)^T所以属于