证明u=f(x,y)满足方程且有连续三阶导那么偏导也满足方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:10:21
已知定义在(-∞,0)U(0,+∞)上的偶函数f(x)满足对任意正数x,y满足f(x×y)=f(x)×f(y),且x>1

(1)puty=1f(x)=f(x)f(1)=>f(1)=1(2)fory>xandx,y∈(0,+∞)theny=kxwherek>1f(y)=f(kx)=f(k)f(x)f是减函数(3)for|x

复变函数一道若u(x,y)与v(x,y)分别是解析函数f(z)的实部与虚部,且f(z)求导不等于0,试证明u(x,y)=

证明:因为f(z)解析,所以f'(z)=du/dx+idv/dx且du/dx和dv/dx不同时为0由隐函数求导法曲线u(x,y)=c1的斜率k1=-(du/dx)/(du/dy)同理导法曲线u(x,y

设Φ(u,v)具有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(эz/эx)

cx-az看成u,cy-bz看成v,对Φ(u,v)=0分别对x,y求偏导,自然得到结果,你要是不会对隐函数求导或者不会对函数求偏导,就要去看书补充基础知识,只满足于得到具体某一题的答案对你没有好处抽象

设f(x,y)具一阶连续偏导数,且满足x•(df/dx)+y•(df/dy)=0.证明f((x,

做变化x=rcost,y=rsintdf/dx=(1/cost)df/dr-[1/(rsint)]df/dtdf/dy=(1/sint)df/dr-[1/(rcost)]df/dtx(df/dx)+y

设y=y(x)由方程xe^f(y)=e^y确定,f(u)可导且f′≠1,求dy/dx

你让我情何以堪,微积分没学会遇到偏导数和隐函数的题?对方程两边取对数,化简后成了lnx+f(y)=y然后求导(这里其实用了偏导和隐函数求导.)y‘=1/x+f’(y)再问:隐函数刚学就有这题了,谢了能

设u=f(x,y)可微,且满足方程x(σ f/σ x)+y(σ f/σ y)=0

x=rcosθ,y=rsinθσx/σr=cosθ,σy/σr=sinθσf/σr=(σf/σx)(σx/σr)+(σf/σy)(σy/σr).=(σf/σx)cosθ+(σf/σy)sinθ.=[(

设函数f(x)满足条件f(x+y)=f(x)+f(y),且f(x)在x=0处连续,证明f(x)在所有的点x0处连续

证明f(x)在R上连续,即要证明对于任意x0,极限lim[f(x0+Δx)(Δx→0)存在且等于f(x0).因为f(x)在x=0处连续,所以limf(x)(x→0)=f(0)又因为f(x+y)=f(x

若定义域为R函数f(x)满足f(x+y)=2*f(x)*f(y),且f(0)不等于0,证明f(x)是偶函数

这是抽象函数,一般的处理方法是特殊指法,代值计算.要证偶函数,需从定义出发,最终得出结论:f(x)=f(-x),因不大好证,可通过变形,证出:f(x)-f(-x)=0,或f(x)+f(-x)=2f(x

已知函数f(x)对于任意的x,y∈R都满足f(x+y)=f(x)+f(y),且当x>0时f(x)>0恒成立 证明f(x)

由任意x.y€R,总有f(x)+f(y)=f(x+y)令x=y=0则f(0)+f(0)=f(0+0)即f(0)=0再令y=-x则得f(x)+f(-x)=f(x+(-x))=f(0)=0即f

函数y=f(x)满足f(u+v)=f(u)f(v),且f(1/2)=3,函数g(x)满足g(uv)=g(u)+g(v),

(u+v)=f(u)f(v),此类函数一般为指数函数模型,y=a^x,g(uv)=g(u)+g(v),此类函数一般为对数函数模型,y=loga*x.由此解得f(x)=9^x,g(x)=log9*x.所

方程f(y/z,z/x)=0确定z是x,y的函数,f有连续的偏导数,且f'v(u,v)≠0.

用微分.再问:能不能用复合函数求导解下再答:用的就是复合函数求导方法。函数t=f(y/z,z/x)是由t=f(v,u)和v=y/z、u=z/x三个函数复合而成的。解答过程省略了:df(v,u)=0;f

设Φ(u,v)有连续偏导数,证明由方程Φ(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a(∂

用公式法∂z/∂x=-Fx/Fz计算的话得:Fx=cΦ1Fy=cΦ2Fz=Φ1(-a)+Φ2(-b)你:Fx和Fy求错了.

设y=y(x)由方程xe^f(u)=e^y确定,其中f的二阶可导,且f'≠1求d^2(y)/dx^2

xe^f(u)=e^yx=e^[y-f(u)]1=e^[y-f(u)][y'-f'(u)u']y'=e^[f(u)-y]+f'(u)u'y''={e^[f(u)-y]+f'(u)u'}=e^[f(u)

偏导数证明题设t(u,v)具有连续偏导数.证明:由方程t(cx-az,cy-bz)=0所确定的函数z=f(x,y)满足a

设u=cx-az,v=cy-bz.方程t(cx-az,cy-bz)=0两边对x求偏导数,得ðf/ðu*(c-aðz/ðx)-bðf/ðv*&

设f(x)在x=0处可导,且对任意x.y满足f(x+y)=f(x)f(y),证明f(x)处处可导,且

f(0+0)=f(0)*f(0),则f(0)=0或1,当f(0)=0时,f(x)==0;f(0)=1,则x趋于0时,极限(f(x)-1)/x存在=f'(0),在任一点x0处,当a趋于0时,极限[f(x

已知f(x)是定义在R上的恒不为0的函数,且对任意实数x,y都满足f(x)*f(y)=f(x+y)(1)求f(0)并证明

f(0)*f(0)=f(0)所以f(0)=1或者0,因为f(x)恒不为0,所以f(0)=1.并且对任意的x,f(x)=f(x/2)*f(x/2)=[f(x/2)]^2>0显然成立.对任意的x&g