随机变量X和Y相互独立且服从同一分布,P(X=K)=p(1-p)^(k-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:36:18
设两个随机变量X,Y相互独立,且都服从均值为0、方差为12

令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y

设随机变量X与Y相互独立,且服从(0,2)上的均匀分布,求Z=|X-Y|的分布函数和概率密度

因为随机变量X与Y相互独立,且服从(0,2)上的均匀分布,则x-y区间为(-2,2),从而Z=|X-Y|服从(0,2)上的均匀分布,根据若r.v.ξ服从[a,b]上均匀分布,其分布密度为P(x)=1/

假设随机变量X和Y相互独立,服从标准正态分布,求随机变量Z=X/Y的概率密度.

联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z

设随机变量X和Y相互独立,且都服从正态分布N(0,1),计算概率:P(X*X+Y*Y

随机变量x,y相互独立都服从N(0,1)则f(x,y)=fX(x)fY(y)=1/(2π)e^(-x²-y²)P(X^2+Y^2

已知随机变量X,Y相互独立,且同服从分布N(0,1),又Z=根号(X^2+Y^2),求E(X),D(X)

E(Z)=E(X^2+Y^2)=E(X^2)+E(Y^2)=[DX+(EX)^2]+[DX+(EX)^2]=1+0+1+0=2因为DX=E(X^2)-(EX)^2D(Z)=D(X^2+Y^2)=D(X

:设X 和Y 是相互独立的且均服从正态分布N( 0 ,0.5)的随机变量,求(X - Y)绝对值的数学期望

E(X-Y)=∑∞P(X1)(Y1)(X1-Y1)=∫∞∫∞f(x)f(y)(x-y)dxdy=0希望能帮到您~

已知随机变量x和y相互独立且均服从参数λ=2的指数分布,问,随机变量...

x和y相互独立且均服从参数λ=2的指数分布--->F(x,y)=F(x)*F(y)=(1-e^(-2x))(1-e^(-2y))=1-e^(-2x)-e^(-2y)+e^(-2x-2y)

已知两个随机变量X,Y相互独立且服从0,1上的均匀分布,求X-Y和X的联合密度函数

设Z=X-Y当X=x时,Z在(x-1,x)上均匀分布fZ|X(z|x)=1.z属于(x-1,x),x属于(0,1)其他为0f(z,x)=fZ|X(z|x)f(x)=1,z属于(x-1,x),x属于(0

设随机变量X和Y相互独立,且服从同一分布,证明P(X小于等于Y)=1/2

X,Y互相独立设X的密度函数为f(x),Y的密度函数为f(y)它们的联合密度函数为f(x,y)=f(x)f(y)f(y,x)=f(y)f(x)=f(x,y)f(x,y)关于y=x对称P(X

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

如果随机变量X和Y都服从正态分布且相互独立,那么U=X+Y和V=X+Y也都服从正态分布且独立,为什么独立?

我个人认为你的题目是不是写错了?是否是U=X+Y,V=X-即使是如此,两者独立也仅在X,Y同方差的情况下成立的样子.因为,对于正态分布来说,独立等价于不相关,也就是说二者的协方差cov(U,V)=0(

若随机变量X和Y相互独立且服从[0,1]上的均匀分布,则Z=max{X,Y}的期望E(Z)=

答案是2/3,可以先求出Z的概率密度再求期望.经济数学团队帮你解答,请及时评价.

1:设X 和Y 是相互独立的且均服从正态分布N( 0 ,0.5)的随机变量,求(X - Y)绝对值的数学期望 有步

由于格式问题,积分无法在这里显示,需要详细解答请去我的百度空间——>相册——>答案中去看.

相互独立随机变量X,Y,服从正态分布N(0.1)

1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+

设随机变量X与Y相互独立且分别服从参数λ=2和λ=1的指数分布 求P{X+Y≤1}

求出XY联合概率密度以后,在坐标轴XY上画出Y=-X-1的线,再根据X和Y的取值范围ie,即X>0,Y>0,把联合概率密度在围成的三角形内进行2重积分,即可算出最后答案,