∠A=acos((b^2 c^2-a^2) (2*b*c))是什么意思
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:52:35
根据正弦定律得知a/sinA=b/sinB=c/sinC=kb-c=2acos(60°+C)ksinB-ksinC=2ksinAcos(60°+C)sinB-sinC=2sinAcos(60°+C)s
根据正弦定律得知a/sinA=b/sinB=c/sinC=kb-c=2acos(60°+C)ksinB-ksinC=2ksinAcos(60°+C)sinB-sinC=2sinAcos(60°+C)s
第二问答案在图中,点击图片查看大图
由正弦定理asinA=bsinB=csinC=2R,得:sinB-sinC=2sinA•cos(60°+C),…(2 分)∵A+B+C=π,故有:sin(A+C)−sinC=sinAcosC
(b-2c)cosA=a-2acos^2(B/2)则(sinB-2sinC)cosA=sinA-sinA(1+cosB)则sinBcosA-2sinCcosA=sinA-sinA-sinAcosBsi
x=asinθ+acosθ=√2a(sinθcos45+cosθsin45)=√2asin(θ+45)同样:y=acosθ+asinθ=√2a(sinθcos45+cosθsin45)=√2asin(
利用Cos2A=2Cos²A-1(b-2c)cosA=a-a*(cosB+1)=-acosB正弦定理(2RsinB-4RsinC)cosA=-2RsinAcosBsinBcosA-2sinC
a*cosc/2=a*(1/2(2cos^2c/2-1)+1/2)=a*(1/2cosc+1/2)=1/2a*cosc+1/2a.另一部分同理,整理后左边是:1/2a*cosc+1/2a+1/2c*c
/>老师说的没错,o(∩_∩)o...哈哈!写到“sinB-sinC=sinAcosC-√3sinAsinC”的时候,因为sinB=sin(A+C)=sinAcosC+cosAsinC所以cosAsi
acos^2C/2+ccos^2A/2=3b/2a*(cosC+1)/2+c*(cosA+1)/2=3b/2acosC+a+ccosA+c=3bacosC+a+ccosA+c=2b+b,a/sinA=
明白了,是偶看错了刚才.A=2π/3因为b-c=2acos(π/3+C)所以sinB-sinC=2sinA(1/2cosC-√3/2sinC)所以sinB-sinC=sinAcosC-√3sinAsi
cos²(c/2)=(1+cosC)/2cos²(A/2)=(1+cosA)/2就有(a+c)/2+1/2(acosC+ccosA)=3b/2再用余弦定理把cos转化就出来了.
正弦定理知等价于证sinacosa+sinbcosb+sinccosc=2sinasinbsin(a+b)=2sin^2asinbcosb+2sin^2bsinacosa移项用二倍角公式等价于cos2
2.b^2=a^2+c^2-2accosB2b=a+c=816=(a+c)^2-2ac-2ac*1/216=64-3acac=16S=1/2acsinB=1/2*16*根号3/2=4根号3
acos^2C/2+ccos^2A/2=3b/2a*(cosC+1)/2+c*(cosA+1)/2=3b/2acosC+a+ccosA+c=3bacosC+a+ccosA+c=2b+b,a/sinA=
acos^2(C/2)+ccos^2(A/2)=3/2b1/2a(2cos^2(C/2)-1)+1/2a+1/2c(2cos^2(A/2)-1)+1/2c=3/2b1/2acosC+1/2ccosA+
1)f(x)=a[1/2*sin2x-√3/2*(1+cos2x)+√3/2]+b=a[1/2sin2x-√3/2cos2x]+b=asin(2x-π/3)+b因为a>0,所以单调减区间为:2kπ+π
a[2cos²(C/2)]+c[2cos²(A/2)]=3b--->a(1+cosC)+c(1+cosA)=3b--->a(a²+b²-c²+2ab)