计算下列定积分:∫上限1下限0(xe^x)dx; ∫上限1e下限0xlnxdx;求过程!
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:38:01
计算下列定积分:∫上限1下限0(xe^x)dx; ∫上限1e下限0xlnxdx;求过程!
∫(0→1) xe^x dx = ∫(0→1) x d(e^x)
= xe^x - ∫(0→1) e^x dx
= [(1)e^(1) - (0)e^(0)] - e^x
= e - [e^(1) - e^(0)]
= e - e + 1
= 1
∫(0→e) xlnx dx = ∫(0→e) lnx d(x²/2)
= (1/2)x²lnx - (1/2)∫(0→e) x² d(lnx)
= [(1/2)(e²)ln(e) - (1/2)(0)] - (1/2)∫(0→e) x dx
= (1/2)e² - (1/2)(x²/2)
= (1/2)e² - (1/4)(e² - 0)
= (1/4)e²
再问: 第一个算对了!第二个我书上的答案是e²/4+1/4=1/4(1+e²)
再答: 可能你上限打错了吧,1e什麽意思?
再问: 好意思!上限是个e,没有1!不好意思啊!
再答: ∫ xlnx dx = ∫ lnx d(x²/2) = (1/2)∫ lnx d(x²) = (1/2)x²lnx - (1/2)∫ x² d(lnx) = (1/2)x²lnx - (1/2)∫ x²(1/x) dx = (1/2)x²lnx - (1/2)∫ x dx = (1/2)x²lnx - (1/2)(x²/2) + C = (1/2)x²lnx - (1/4)x² + C = (1/4)x²(2lnx - 1) + C 代入上下限得: = (1/4)(e²)[2ln(e) - 1] - (1/4)(0) = (1/4)(e²)(2 - 1) = e²/4 还有意见不?你要有鉴别能力,不只是光信答案就可以。
再问: 谢谢了啊!一会给你发过去几道题!帮忙解答一下!
= xe^x - ∫(0→1) e^x dx
= [(1)e^(1) - (0)e^(0)] - e^x
= e - [e^(1) - e^(0)]
= e - e + 1
= 1
∫(0→e) xlnx dx = ∫(0→e) lnx d(x²/2)
= (1/2)x²lnx - (1/2)∫(0→e) x² d(lnx)
= [(1/2)(e²)ln(e) - (1/2)(0)] - (1/2)∫(0→e) x dx
= (1/2)e² - (1/2)(x²/2)
= (1/2)e² - (1/4)(e² - 0)
= (1/4)e²
再问: 第一个算对了!第二个我书上的答案是e²/4+1/4=1/4(1+e²)
再答: 可能你上限打错了吧,1e什麽意思?
再问: 好意思!上限是个e,没有1!不好意思啊!
再答: ∫ xlnx dx = ∫ lnx d(x²/2) = (1/2)∫ lnx d(x²) = (1/2)x²lnx - (1/2)∫ x² d(lnx) = (1/2)x²lnx - (1/2)∫ x²(1/x) dx = (1/2)x²lnx - (1/2)∫ x dx = (1/2)x²lnx - (1/2)(x²/2) + C = (1/2)x²lnx - (1/4)x² + C = (1/4)x²(2lnx - 1) + C 代入上下限得: = (1/4)(e²)[2ln(e) - 1] - (1/4)(0) = (1/4)(e²)(2 - 1) = e²/4 还有意见不?你要有鉴别能力,不只是光信答案就可以。
再问: 谢谢了啊!一会给你发过去几道题!帮忙解答一下!
计算下列定积分:∫上限1下限0(xe^x)dx; ∫上限1e下限0xlnxdx;求过程!
求定积分∫『上限是1下限是0』xe^(2x)dx
求定积分,其积分下限0,上限1,∫ √x [e^√x]dx
求定积分∫( x^3)[e^(-x^2)] dx 上限(ln2)^1/2,下限0
定积分∫上限e-1,下限0 ln(x+1)dx 怎么求?
求定积分∫ xln(x+1)dx.上限e-1,下限0
求定积分∫上限ln2,下限0 (根号e^x-1 ) dx,
求定积分∫(上限1 下限0)e^x dx
求定积分∫上限ln2下限0 根号下(e^x-1)dx
求定积分∫上限1下限0 e^2x dx
求一道定积分答案 ∫dx/(1+e^x) 上限ln3 下限0
定积分 ∫x*lnx*dx 上限e.下限1