如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 00:54:57
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=
(1)求证:PC是⊙O的切线;
(2)求证:BC=
1 |
2 |
(1)证明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直径,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半径.
∴PC是⊙O的切线.
(2)证明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC=
1
2AB.
(3)连接MA,MB,
∵点M是
AB的中点,
∴
AM=
BM,
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.
∴
BM
MC=
MN
BM.
∴BM2=MN•MC.
又∵AB是⊙O的直径,
AM=
BM,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=2
2.
∴MN•MC=BM2=8.
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直径,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半径.
∴PC是⊙O的切线.
(2)证明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC=
1
2AB.
(3)连接MA,MB,
∵点M是
AB的中点,
∴
AM=
BM,
∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.
∴
BM
MC=
MN
BM.
∴BM2=MN•MC.
又∵AB是⊙O的直径,
AM=
BM,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=2
2.
∴MN•MC=BM2=8.
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
初三数学题 急!如图,已知AB是圆O的直径,点C在圆O上,过点C的直线与AB的延长线交与P,AC=PC,角COB=2∠P
如图,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,且∠A=∠PCB.
如图AB时圆o的直径,点c在圆o上,过点c的直线与AB的延长线交于点p,且角A等于角pcB.求pc是圆o的切线
如图,AB是圆O的直径,点C在圆O上,过点C的直线与AB的延长线交于点P,且∠A=∠PCB.(1)求证:PC是圆O的切线
已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.
如图,已知AB是⊙O的直径,AB=2,∠BAC=30°,点C在⊙O上,过点C与⊙O相切的直线交AB的延长线于点D,求线段
如图:AB是圆O的直径,C是圆O上一点,过点C的切线与AB延长线交于点D,CE//AB交圆O于点,求证:(1)∠DCB=
如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于
如图,AB是⊙O的直径,AC是弦,OD⊥AC于点D,过点A作⊙O的切线AP,AP与OD的延长线交于点P,连接PC、BC.
如图,已知AB是⊙O的直径,过⊙O上的点C的切线交AB的延长线于E,AD⊥EC于D且交⊙O于F.连接BC,CF,AC.
如图,AB为圆O的直径,点C在圆O上,过点C作圆O的切线交AB的延长线于点D,已知∠D=30