函数f(x)=x^2+2x+a/x.x∈[1,+∞] (1)当a=1/2时求函数f(x)的最小值
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 21:32:54
函数f(x)=x^2+2x+a/x.x∈[1,+∞] (1)当a=1/2时求函数f(x)的最小值
(2)若对任意x∈[1,+∞],f(x)>0成立,求实数a的取值范围
x^2+2x+a整个除以x.
(2)若对任意x∈[1,+∞],f(x)>0成立,求实数a的取值范围
x^2+2x+a整个除以x.
(1)当a=1/2时 x∈[1,+∞]
∴f(x)=(x^2+2x+1/2)/x=x+1/2x+2
∴对f(x)求导得: f'(x)=1-1/(4x^2)
∵x∈[1,+∞] ∴1/(4x^2)<1 ∴f'(x)=1-1/(4x^2)>0恒成立
∴f(x)在x∈[1,+∞] 上为增函数 , ∴x=1时 f(x)取得最小值为:
f(x)min=7/2
(2)∵f(x)=(x^2+2x+a)/x=x+a/x+2
对任意x∈[1,+∞],f(x)>0恒成立 即 x+a/x+2>0
∵x∈[1,+∞] ∴对不等式 x+a/x+2>0进行移项变形得:
a>-x^2-2x
令 : g(x)=-x^2-2x , x∈[1,+∞]
∴g(x)=-x^2-2x =-(x+1)^2+1
∴g(x)在 x∈[1,+∞] 上为减函数 ∴g(x)最大值为:
g(x)max=g(1)=-3
∴a>(-x^2-2x)max=g(x)max=-3
∴a的取值范围为: a>-3
若有不懂可再问我.
∴f(x)=(x^2+2x+1/2)/x=x+1/2x+2
∴对f(x)求导得: f'(x)=1-1/(4x^2)
∵x∈[1,+∞] ∴1/(4x^2)<1 ∴f'(x)=1-1/(4x^2)>0恒成立
∴f(x)在x∈[1,+∞] 上为增函数 , ∴x=1时 f(x)取得最小值为:
f(x)min=7/2
(2)∵f(x)=(x^2+2x+a)/x=x+a/x+2
对任意x∈[1,+∞],f(x)>0恒成立 即 x+a/x+2>0
∵x∈[1,+∞] ∴对不等式 x+a/x+2>0进行移项变形得:
a>-x^2-2x
令 : g(x)=-x^2-2x , x∈[1,+∞]
∴g(x)=-x^2-2x =-(x+1)^2+1
∴g(x)在 x∈[1,+∞] 上为减函数 ∴g(x)最大值为:
g(x)max=g(1)=-3
∴a>(-x^2-2x)max=g(x)max=-3
∴a的取值范围为: a>-3
若有不懂可再问我.
函数f(x)=x^2+2x+a/x.x∈[1,+∞] (1)当a=1/2时求函数f(x)的最小值
f(x)=(x^2+2x+a)/x,x∈[1,+∞).当a>0时,求函数f(x)的最小值g(a)
已知函数f(x)=x2+2x+a/x,x∈【1,+∞),当a=-1时,求函数f(x)的最小值
已知函数f(x)=lg(x^2+2x+a)/x x属于(0,+) 当a=1/2时 求函数f(x)的最小值
已知函数f(X)=(x^2+2x+a)/x,x∈[1,∞)a=1时,求函数f(x)的最小值
已知函数x²+2x+a/x,x属于[1,正无穷大) 求 当a=-1时,求函数f(x)的最小值
已知函数f(x)=x^2+2x+a,x属于[1,正无穷大).⑴当a=4时,求函数f(x)的最小值
函数f(x)=x a/x 1 ,x{0,正无穷大),当a=2时,求函数f(x)的最小值
已知函数f(x)=X^2+ax+3当x∈[1,2]时,f(x)≥a恒成立,求a的最小值
【高一】已知函数f(x)=X^2+ax+3当x∈[1,2]时,f(x)≥a恒成立,求a的最小值
已知函数fx=(x2+2x+a)/x,x∈[1,+∞).当a=-1时,求函数f(x﹚的最小值
已知函数f(x)=(x^2+2x+a)/x,x∈[1,+∞).若a为正常数,求f(x)的最小值.