100分 已知函数f(x)=x2+x/2+alnx(x>0),f(x)的导函数是f'(x),对任意两个
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/05 20:48:47
100分 已知函数f(x)=x2+x/2+alnx(x>0),f(x)的导函数是f'(x),对任意两个
已知函数f(x)=x2+ +alnx(x>0),f(x)的导函数是f'(x),对任意两个不相等的正数x1,x2,证明:
(1)当a≤0时,1/2f(x1)+1/2f(x2) >f(1/2x1+1/2x2);
(2)当a≤4时,│f′(x1)-f′(x2)│>│x1-x2│ .
要分析(可稍微写一点)和过程(必须要)答得好还会给你加
已知函数f(x)=x2+x/2+alnx(x>0),f(x)的导函数是f'(x),对任意两个不相等的正数x1,x2,证明:
(1)当a≤0时,1/2f(x1)+1/2f(x2) >f(1/2x1+1/2x2);
(2)当a≤4时,│f′(x1)-f′(x2)│>│x1-x2│
这是原题 刚才f(x)=x2+x/2+alnx中少了x/2,抱歉!
已知函数f(x)=x2+ +alnx(x>0),f(x)的导函数是f'(x),对任意两个不相等的正数x1,x2,证明:
(1)当a≤0时,1/2f(x1)+1/2f(x2) >f(1/2x1+1/2x2);
(2)当a≤4时,│f′(x1)-f′(x2)│>│x1-x2│ .
要分析(可稍微写一点)和过程(必须要)答得好还会给你加
已知函数f(x)=x2+x/2+alnx(x>0),f(x)的导函数是f'(x),对任意两个不相等的正数x1,x2,证明:
(1)当a≤0时,1/2f(x1)+1/2f(x2) >f(1/2x1+1/2x2);
(2)当a≤4时,│f′(x1)-f′(x2)│>│x1-x2│
这是原题 刚才f(x)=x2+x/2+alnx中少了x/2,抱歉!
以下是正确解答,哥们第二问的答案我会发你邮箱的(我认得你)!
100分 已知函数f(x)=x2+x/2+alnx(x>0),f(x)的导函数是f'(x),对任意两个
已知函数f(x)=alnx+1/2x^2 (a>0)若对任意两个不等的正实数x1,x2 都有[f(x1)-f(x2)]/
已知函数f(x)=x^2+2/x+alnx(x>0,a为常数),对任意两个不相等的正数x1,x2,证明:当af[(x1+
已知函数f(x)=x2+2x+alnx.若函数f(x)在区间(0,1)是单调函数,求实数a的取
已知函数f(x)=x2+alnx
设函数f(x)=x²+2/x+alnx,f′(x)是f(x)的导函数
已知f(x)是二次函数,f'(x)是它的导函数,且对任意的x∈R,f'(x)=f(x+1)+x2恒成立,求f(x)的解析
已知函数f(x)=x的平方-3x+alnx(a>0).
f(x)=x²-alnx-bx+2,若函数f(x)有两个不同的零点x1,x2,求证a*f’{(x1 +x2)/
已知函数f(x)=x2-(2a+1)x+alnx.
已知函数f(x)的定义域是{x丨x≠0},对定义域内的任意的x1,x2都有f(x1x2)=f(x1)+f(x2)且x>1
已知函数f(x)=x2+alnx,当a=-2时,求函数f(x)的单调区间