椭圆方程x^2/a^2+y^2/b^2=1(a>b>0),其上一点P与原点O的连线垂直于P与右顶点A的连线,则离心率的范
设在椭圆X^2/a^2+Y^2/b^2=1(a>b>0)上有一点P,它与两个焦点的连线互相垂直,求这个椭圆的离心率.
若椭圆x^2/a^2+y^2/b^2=1(a>b>0)上存在点P(x,y)(y不等于0)到两焦点的连线互相垂直,则离心率
椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的一点p使角OPA=90',O为坐标圆点,A为右顶点,求离心率的范
高二数学 椭圆方程椭圆x^2/a^2+y^2/b^2=1(a>b>0)上两点A、B与中心O的连线相互垂直,则1/OA^2
椭圆x^2/a^+y^2/b^2=1上的点M与椭圆右焦点F1的连线MF1与x轴垂直,且OM与椭圆长轴和短轴点的连线AB平
椭圆x^2/a^2+y^2/b^2=1 a>b>o 右焦点为F 其右准线与x轴的交点为A 在椭圆上存在一点P 满足线段A
椭圆x^2/a^2+y^2/b^2=1 a>b>o 右焦点为F 其右准线与x轴的交点为A 在椭圆上存在一点P满足线段AP
椭圆离心率及方程设椭圆x^/a^+y^/b^=1的左焦点为F,上顶点为A,过A与AF垂直的直线分别交椭圆和X轴正半轴于P
椭圆方程x^2/a^2+y^2/b^2=1(a>b>0)与x轴的正半轴交于点A,O是原点,若椭圆上存在一点M,使MA垂直
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F,其右准线与X轴的交点为A,在椭圆上存在点P满足AP的垂直
高考椭圆1题设椭圆的方程为x^2/a^2+y^2/b^2=1 (a>b>0),过右焦点且不与x轴垂直的直线与椭圆交于P、
已知椭圆X^2/a^2+y^2/b^2=1上任意一点M与短轴两端点B1,B2的连线分别与X轴交于P,