椭圆x^2/a^+y^2/b^2=1上的点M与椭圆右焦点F1的连线MF1与x轴垂直,且OM与椭圆长轴和短轴点的连线AB平
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/06 08:31:31
椭圆x^2/a^+y^2/b^2=1上的点M与椭圆右焦点F1的连线MF1与x轴垂直,且OM与椭圆长轴和短轴点的连线AB平行.
1)求椭圆的离心率
2)F2是椭圆的左焦点,C是椭圆上的任意一点,证明∠F1CF2≤二分之π
3)过F1且与AB垂直的直线交椭圆于P,Q若三角形PF2Q的面积是20倍根号3,求此时椭圆的方程.
11点之前打完再多加30分.
1)求椭圆的离心率
2)F2是椭圆的左焦点,C是椭圆上的任意一点,证明∠F1CF2≤二分之π
3)过F1且与AB垂直的直线交椭圆于P,Q若三角形PF2Q的面积是20倍根号3,求此时椭圆的方程.
11点之前打完再多加30分.
1,当M在第一象限,求出M(√(a²-b²),b²/a)
OM斜率为b²/[a√(a²-b²)]=b/a
得a/b=√2
e=√(1-b²/a²)=√2/2
2,根据1结果,椭圆方程为:
(x/√2b)²+(y/b)²=1
设C(x,y)
cos∠F1CF2=(CF1²+CF2²-F1F2²)/(2CF1·CF2)
=(y²+x²-b²)/√[y²+(x-b)²]√[y²+(x+b)²]
用x替代y得:
x²/|x²-4b²|≥0 所以得证
3,我们还是只讨论一种情况就行了;AB在第一象限,Q在第一象限,P在y负半轴.
那么直线PQ过(b,0),斜率为a/b,方程为y=a/bx-a=√2x-√2b
三角形面积为1/2cos∠F1PF2·PF1·PQ
连立方程求解PQ=6√2b/5 Px=(4-√6)/5
PF2=√2/2|x+2b| 解出b即可,繁琐
OM斜率为b²/[a√(a²-b²)]=b/a
得a/b=√2
e=√(1-b²/a²)=√2/2
2,根据1结果,椭圆方程为:
(x/√2b)²+(y/b)²=1
设C(x,y)
cos∠F1CF2=(CF1²+CF2²-F1F2²)/(2CF1·CF2)
=(y²+x²-b²)/√[y²+(x-b)²]√[y²+(x+b)²]
用x替代y得:
x²/|x²-4b²|≥0 所以得证
3,我们还是只讨论一种情况就行了;AB在第一象限,Q在第一象限,P在y负半轴.
那么直线PQ过(b,0),斜率为a/b,方程为y=a/bx-a=√2x-√2b
三角形面积为1/2cos∠F1PF2·PF1·PQ
连立方程求解PQ=6√2b/5 Px=(4-√6)/5
PF2=√2/2|x+2b| 解出b即可,繁琐
椭圆x^2/a^+y^2/b^2=1上的点M与椭圆右焦点F1的连线MF1与x轴垂直,且OM与椭圆长轴和短轴点的连线AB平
已知椭圆x^2/5+y^2/3=m^2/2,过右焦点且斜率为1的直线交椭圆与A,B,M为AB中点,射线OM交椭圆与N点
过椭圆x^2 /5 +y^2 =1 的右焦点与x轴垂直的直线交椭圆于A,B两点,线段AB的长
椭圆x^2/49+y^2/24=1上一点P与椭圆两焦点F1,F2连线互相垂直,则三角形PF1F2的面积
求椭圆x^2/25+y^2/9=1上的点P,使点P与椭圆的两个焦点连线互相垂直.
椭圆的一个焦点F(C,0)与短轴两端点的连线互相垂直过F作x轴的垂线交椭圆于A,B两点,AB=根号2,求椭圆方程
已知椭圆中心在原点,焦点在x轴上,直线x+y=1被椭圆截得的弦AB的长为2根号2,且AB的中点与原点连线的斜率为(根号2
在椭圆X^2/25+Y^2/5=1上求一点P,使点P与椭圆两焦点的连线互相垂直
在椭圆x^2/9+y^2/4=1上求一点P,使点P与椭圆两个焦点的连线互相垂直.
已知P是椭圆x平方/a平方+y平方/b=1(a>b>0)上的点,p与两焦点F1,F2的连线互相垂直,且点p到两准线的距离
点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方PA垂直于
高考椭圆1题设椭圆的方程为x^2/a^2+y^2/b^2=1 (a>b>0),过右焦点且不与x轴垂直的直线与椭圆交于P、