1²+2²/1×2+2²+3²/2×3+……+2001²+2002
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 03:33:52
1²+2²/1×2+2²+3²/2×3+……+2001²+2002²/2001×2002
/>考察一般项:
[n²+(n+1)²]/[n(n+1)]
=(2n²+2n+1)/(n²+n)
=2 +1/(n²+n)
=2+1/[n(n+1)]
=2+1/n -1/(n+1)
(1²+2²)/(1×2)+(2²+3²)/(2×3)+……+(2001²+2002²)/(2001×2002)
=2+1/1-1/2+2+1/2-1/3+...+2+1/2001-1/2002
=2×2001+(1-1/2+1/2-1/3+...+1/2001-1/2002)
=4002+(1-1/2002)
=4002+2001/2002
=8014005/2002,也是4002又2002分之2001.
[n²+(n+1)²]/[n(n+1)]
=(2n²+2n+1)/(n²+n)
=2 +1/(n²+n)
=2+1/[n(n+1)]
=2+1/n -1/(n+1)
(1²+2²)/(1×2)+(2²+3²)/(2×3)+……+(2001²+2002²)/(2001×2002)
=2+1/1-1/2+2+1/2-1/3+...+2+1/2001-1/2002
=2×2001+(1-1/2+1/2-1/3+...+1/2001-1/2002)
=4002+(1-1/2002)
=4002+2001/2002
=8014005/2002,也是4002又2002分之2001.
求2003²-2002²+2001²-2000²+……+3²-2
1²+2²/1×2+2²+3²/2×3+……+2001²+2002
2003²-2002²+2001²-2000²+……+3²-2
求和:1²-2²+3²-4²+5²-6²+…+99²
(1²+3²+5²+……+99²)-(2²+4²+6
1²-2²+3²-4²+……+99²-100²怎么计算?
1²-2²+3²-4²……+2005²-2006²+2007
求值(2²+4²+6²+……+2000²)-(1²+3²+5
2001²-2000²+1999²-1998²+…+3²-2²
计算1-2²+3²-4²+5²-6²+…+99²-100
计算1²-2²+3²-4²+…+99²-100²
找规律 1²+2²+3²+4²+……+2012²