设{an}等差数列,{bn}是正项等比数列,且a1=b1,a(2n+1)=b(2n+1),则a(n+1)与b(n+1)的
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/09 03:16:21
设{an}等差数列,{bn}是正项等比数列,且a1=b1,a(2n+1)=b(2n+1),则a(n+1)与b(n+1)的大小关系为
an = a1 + (n-1)*d a = a1 + 2nd bn = b1 * q^(n-1) b = b1 * q^(2n) a1 + 2nd = a1 * q^(2n) 2(a1 + nd) = a1 * [1 + q^(2n)] a = a1 + nd = a1 * [1 + q^(2n)]/2 b = a1 * q^n a - b = (a1 /2) * [q^(2n) - 2 q^n + 1] = (a1 /2) * (q^n -1)^2 所以a 大于
an为等差数列,bn为等比数列,若a1=b1,a(2n+1)=b(2n+1),比较a(n+1),b(n+1)的关系
1 已知{an}是等差数列,公差d≠0,{bn}是等比数列,a1=b1>0,a(下标:2n+1)=b(下标:2n+1),
设等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,已知bn>0(n∈N*),a1=b1=1,a2+b
{an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
已知等比数列{an}的首项a1>0,公比q>0.设数列{bn}的通项bn=a(n+1)+a(n+2),数列{an},{b
高二关于等比数列的题数列{an}的前n项和为Sn,数列{bn}中,b1=a1,bn=an-a(n-1)(n>=2)且an
在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n
设bn=(n-1)/(an-2),(n大于等于2),an=n^a-n+2,且b(n+1)+b(n+2)+...b(2n+
数列{an},{bn}的各项均为正数,a1=1,b1=2,且对于任意自然数n, lg bn、lg a(n+1)、lg b
已知{an}是首项为a1=1的等差数列且满足a(n+1)>an,等比数列{bn}的前三项分别为b1=a1+1,b2=a2
数列{an}、{bn}的每一项都是正数,a1=8,b1=16,且an,bn,a(n+1)成等差,bn,a(n+1),b(