作业帮 > 数学 > 作业

不等式性质,a,b>0,a>b,n∈N+,证明n√a>n√b

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 13:59:04
不等式性质,a,b>0,a>b,n∈N+,证明n√a>n√b
概括来说就是不等式两边同正,可开n次方,不等式仍成立
法一:数学归纳法,n=1时,a>b成立,假设n=k时成立,则有a^(1/k)>b^(1/k)成立.因为a^{[1/(k+1)]*[(k+1)/k]}>b^{[1/(1+k)]*[(k+1)/k]}成立,所以……写到这发现兜了一圈走回了原地.法二:因为左右式都正的,所以a^[(1/n)*n]>b[(1/n)*n]不就可以了?