作业帮 > 数学 > 作业

等比数列的前n项和的Sn,S2n,S3n有何关系?

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:40:11
等比数列的前n项和的Sn,S2n,S3n有何关系?
它们3个数成不成等比数列?成的话q公比是多少?
设等比数列{an}的公比为q,则其和Sn,S2n,S3n之间有以下关系:
Sn,S2n-Sn,S3n-S2n成等比数列,公比为q^n.
证明:先证明一个更一般的通项公式.在等比数列中,
an=a1q^(n-1)
am=a1q^(m-1)
两式相除得an/am=q^(n-m),∴an=amq^(n-m).
S2n=a1+a2+...+an+a(n+1)+a(n+2)+...+a2n
=Sn+(a1q^n+a2q^n+...+anq^n)=Sn+(a1+a2+...+an)q^n=Sn+Snq^n
∴(S2n-Sn)/Sn=q^n.
同理,S3n=S2n+[a(2n+1)+a(2n+2)+...+a3n]
=S2n+[a(n+1)q^n+a(n+2)q^n+...+a2nq^n)
=S2n+[a(n+1)+a(n+2)+...+a2n]q^n
=S2n+[S2n-Sn}q^n.
∴(S3n-S2n)/(S2n-Sn)=q^n.
∴(S2n-Sn)/Sn=(S3n-S2n)/(S2n-Sn).即(S2n-Sn)^2=Sn(S3n-S2n).故证.