一道高中求数列通项题 已知{an}中,a1=1/3,前n项和Sn与an的关系是Sn=n(2n-1)an,求an.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 16:48:42
一道高中求数列通项题
已知{an}中,a1=1/3,前n项和Sn与an的关系是Sn=n(2n-1)an,求an.
已知{an}中,a1=1/3,前n项和Sn与an的关系是Sn=n(2n-1)an,求an.
当n>=2时
Sn=n(2n-1)an
S(n-1)=(n-1)(2n-3)a(n-1)
an=Sn-S(n-1)=n(2n-1)an-(n-1)(2n-3)a(n-1)
an/a(n-1)=(2n-3)/(2n+1)
所以
an=an/a(n-1) * a(n-1)/a(n-2) * a(n-2)/a(n-3) * ...* a2 / a1 * a1
=(2n-3)/(2n+1) * (2n-5)/(2n-1) * (2n-7)/(2n-3) * ...* 1/5 * 1/3
=1/((2n+1)(2n-1))
=1/(4n^2-1)
当n=1时也成立
所以an=1/(4n^2-1)
Sn=n(2n-1)an
S(n-1)=(n-1)(2n-3)a(n-1)
an=Sn-S(n-1)=n(2n-1)an-(n-1)(2n-3)a(n-1)
an/a(n-1)=(2n-3)/(2n+1)
所以
an=an/a(n-1) * a(n-1)/a(n-2) * a(n-2)/a(n-3) * ...* a2 / a1 * a1
=(2n-3)/(2n+1) * (2n-5)/(2n-1) * (2n-7)/(2n-3) * ...* 1/5 * 1/3
=1/((2n+1)(2n-1))
=1/(4n^2-1)
当n=1时也成立
所以an=1/(4n^2-1)
一道高中求数列通项题 已知{an}中,a1=1/3,前n项和Sn与an的关系是Sn=n(2n-1)an,求an.
【1】已知数列[an]中,a1=1/3,前n项和sn与an的关系是sn=n[2n-1]an,试求an
已知数列{an}中,a1=1/3,前n项和Sn与an的关系式是n项和Sn=n(2n-1)an,求{an}的通项公式
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
已知{an}a1=1/3,前n项和Sn与an的关系是Sn=n(2n-1)an,求通项公式an
已知数列{An}首项A1=2/3,An+1=2An/An+1,求数列{n/An}的前n项和Sn
已知数列{an}中,a1=1/3,前n项和Sn与an的关系是Sn=n(2n-1)an,试求通项公式an
已知数列an中,a1=2,前n项和sn,若sn=n^2an,求an
高中数列习题设数列an的前n项和sn,已知首项a1=3,且Sn+1+Sn=2an+1,试求此数列的通项公式an及前n项和
已知数列{an}的前N项和Sn与an之间满足a1=1,Sn=n的平方*an,求{an}
已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn,求An的通项公式和Sn
已知数列{an}中,an=(2n+1)3n,求数列的前n项和Sn