已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是______.
来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/07 13:49:27
已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是______.
由x2+xy+y2-2=0得:x2+2xy+y2-2-xy=0,
即(x+y)2=2+xy≥0,所以xy≥-2;
由x2+xy+y2-2=0得:x2-2xy+y2-2+3xy=0,
即(x-y)2=2-3xy≥0,所以xy≤
2
3,
∴-2≤xy≤
2
3,
∴不等式两边同时乘以-2得:
(-2)×(-2)≥-2xy≥
2
3×(-2),即-
4
3≤-2xy≤4,
两边同时加上2得:-
4
3+2≤2-2xy≤4+2,即
2
3≤2-2xy≤6,
∵x2+xy+y2-2=0,∴x2+y2=2-xy,
∴M=x2-xy+y2=2-2xy,
则M的取值范围是
2
3≤M≤6.
故答案为:
2
3≤M≤6
即(x+y)2=2+xy≥0,所以xy≥-2;
由x2+xy+y2-2=0得:x2-2xy+y2-2+3xy=0,
即(x-y)2=2-3xy≥0,所以xy≤
2
3,
∴-2≤xy≤
2
3,
∴不等式两边同时乘以-2得:
(-2)×(-2)≥-2xy≥
2
3×(-2),即-
4
3≤-2xy≤4,
两边同时加上2得:-
4
3+2≤2-2xy≤4+2,即
2
3≤2-2xy≤6,
∵x2+xy+y2-2=0,∴x2+y2=2-xy,
∴M=x2-xy+y2=2-2xy,
则M的取值范围是
2
3≤M≤6.
故答案为:
2
3≤M≤6
已知x、y是实数且满足x2+xy+y2-2=0,设M=x2-xy+y2,则M的取值范围是______.
设x,y≠0,且方程(x2+xy+y2)a=x2-xy+y2成立,则实数a的取值范围是______.
设x,y是实数,且 x2+xy+y2=3.那么,x2-xy+y2的取值范围是?
设实数x,y满足x2+y2=1则 xy的取值范围是?
设实数xy满足x2 +2y2=6,则x+y的取值范围
实数x、y满足x2+xy+y2=2,记u=x2-xy+y2,则u的取值范围是
已知实数x,y满足x2+y2=2x,则x2y2的取值范围是______.
已知实数xy满足x2+y2-4x+3=0则(x+y-3)/(x-y+1)的取值范围是
设x,y为实数,且x2+xy+y2=1,求x2-xy+y2的值的范围
已知实数x,y满足x2+xy+y2=3,则x2-xy+y2的最小值
已知x,y∈R,且1≤x2+y2≤2,z=x2+xy+y2,则z的取值范围是
已知x,y满足x2/9+y2/4=1,则xy的取值范围是?