作业帮 > 数学 > 作业

在Rt△ABC中,∠BAC=90°,AB=AC,CE⊥BD交BD的延长线于点E,并且∠1=∠2,求证:BD=2CE

来源:学生作业帮 编辑:作业帮 分类:数学作业 时间:2024/11/08 21:02:26
在Rt△ABC中,∠BAC=90°,AB=AC,CE⊥BD交BD的延长线于点E,并且∠1=∠2,求证:BD=2CE
延长CE交BA延长线于F,则EF=CE(角1=2,角BEF=BEC=90,BE=BE,两三角形全等);则CF=2CE;
因ABC是等腰直角三角形,则角ABC=ACB=45;角1=2=22.5;
因角ECD+45+22.5=90,则ECD=22.5;
三角形ABD和ACE中,AB=AC,角ABD=ACF=22.5,角BAD=CAF=90;
则两三角形全等,即BD=CF;
则BD=2CE;